

тоноки

UNIVERSITY

Cyberscience Center

Scattering and Radiation Performance of Ninja Array Antennas Tohoku University, Graduate School of Engineering, Keisuke Konno

Background/Motivation

Results

 d_{v}

Z

 θ [deg.

 d_{x}

Simulation model:

Ninja array antenna with

log periodic dipole array element

Scattering and Radiation Performance

User Research Introduction

Cyberscience Center

► Undetectable and invisible like Japanese traditional undercover, Ninja. ≻Problems: How to design the antenna.

How to realize beam scanning performance.

Approach / Method

Design of Ninja Array Antenna

Design method is in analogous to a method for reflectarray. 1. Reflection coefficient of element is numerically obtained.

Scattering performance of Ninja array

Radiation performance of Ninja array

≻Numerical simulation was performed using SX-ACE and <u>CPU time was</u> reduced from several hours to a few minutes.

≻Direction of scattering field is non-specular.

 \rightarrow Undetectable by monostatic radar!

 \triangleright Direction of radiation field can be controlled to a specific direction (θ =5 deg.). \rightarrow Undetectable performance is available without losing performance as a phased array antenna.

60

30

30

Future goals / Expected results

≻Huge-scale Ninja array antenna.

- ≻Optical Ninja array antenna.
- High security, High frequency, **Practical**

≻Conformal Ninja array antenna.

Expected large computational complexity can be reduced using supercomputing resources!

