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The following two governing equation are integrated numerically without any turbulence model, to obtain
temporal variations of the velocity at each grid point. @ ----=---"----"-"-"-"-"-"--"—--""-"""—"—~-—-—- |
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Liquid/gas fluid flows (such as water/gas) can be categorized roughly into ,A._-;'f;--f?-}'_ = . ( ) _ 2 |
“laminar” and “turbulence”. We often encounter various turbulent flows i ( 'EE)JE'{%@"U) P —+U- VU= —Vp +—V°U |

in nature and industry. The onset of turbulence is well known to be B Laminar Navier-Stokes equation ot €
predicated by an index, so-called “Reynolds number” Re (= inertial force —m
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Between laminar and turbulence, there exits big differences in flow Pipe-flow experiment by Reynolds (1883).

property and also heat-transfer property. Hence, the prediction of
transition to/from turbulence is of practical and scientific importance.

TRFHY — v/ R VESHLEY
well-ordered ) %/)u, EL;};—E mixed/diffused

95U\ Laminar

=L MRERNER
Low friction drag ( Z‘)

(/2 high heat transfer

BISEGENDRIRI £2 0, R E AT B ZZRIN (CRIELT
FNICD. TOEM (REESDHRETNEEN) CXT, B
HOERL A /L EREHT TS 3 TRE) FRBTH3. - "
COMBICONT, ARG EMERVCARMBRERRES S | BRI | s O BEARSERS -2
L—=>3> (DNS) [C K DEL,,.L BERBEINE, EBRKOSAK | Forend / %ﬂ/ESZL/ FEE (CIERL\ReT
DHATY, EFEOME TS 3 IRRIBRORIAICENS. B~ — A it

Flow in the (subcritical) transition regime exhibits localized turbulence intermittently with laminar co- | L :

" . - : | sustaining turbulent regions at very low Re.
exiting. Its features (structure/pattern and statistics) and critical Reynolds number (below which any 0 8 8 y
turbulence cannot sustain) are still open questions. To address this issue, large-scale Direct Numerical
Simulation (DNS) using supercomputers would be helpful, and may allow to find an origin of turbulence.

ELRBRERZEZERCBRIB(C(E, R/N\OZOEBRANMRERTHD, | o
5(CSX-ACE (BREAERZFRB) OXDRBART NLEtEH(IRMAETE® | <
[CHWNWTHEDIBY —)LERD. BEDPCEDANSETERL(CLENRT,

Turbulence
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Critical Reynolds number (unknown)
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Transitional regime
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In order to simulate turbulent flows rigorously, we should leverage supercomputers. In particular, vector FS'E_'_F’T‘},T'fyr‘y&Cf d) \'ﬂ_/, & $) B 34) o a -
computer such as SX-ACE (Tohoku Univ. owns) is a powerful tool for DNS, since flow simulations with ‘ %-Tryi_k(iﬁl, =3 t F“i C o N F N S ]
structured grids is accompanied by massive vector calculations. In this study, we deal with approximately ‘ =138 /1L ”'l'@ Bl grisgzan | : |
- 10 billion grid points, which demands CPU memory of > 200 GB, and supercomputer is required for it. EI/J fd1"ﬁ' (CItB. *%E*EE-'—% Friction L pean(1978) ez lenaai .
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In transitional regime, C; becomes a value - | | | T
intermediate between Iamlnar and full- 0.005 3 4
turbulent values. With turbulent stripe, 10 L1 LA Re 10

higher C; and lower critical Re are found. m

Reynolds number
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Understanding the onset and sustenance mechanism of turbulence would lead a great progress in better |
prediction and control of complex and practical flows. For instance, our findings will contribute the heat-
transfer enhancement in micro heat exchanger and the drag-reduction of aircraft, boat, and vehicle.
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Heat-transfer enhancement of micro heat exchanger and heatsink fin of CPU Shah & Sekuli¢, (2003) Fundamentals of Heat
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Further developments in supercomputing performance/technique are necessary to realize 10,000-times ‘ Exchanger Design, John Wiley & Sons, Inc.
larger DNS for fully-capturing turbulent-stripe pattern in the vicinity of the critical Reynolds number.

B R AR D IS (S — R ERR 3012, BRO1FEME [ |

© Yeh & Taira (2016) 69th Ann. Meeting
APS-DFD Gallery of Fluid Motion, PO019

2= OELAERS & Hl i

Turbulence-transition control on airfoil
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Highly-developed CFD* tool for next-generation product
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CFD: Computational Fluid Dynamics
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