Gaussian の使い方

2021年1月現在,東北大学サイバーサイエンスセンター 大規模科学計算システムでは 非経験的分子軌道計算プログラム Gaussian16 (C.01) をサービスしております.

ここでは、実際に Gaussian で計算を行う手順を説明します. Gaussian の理論的背景な どは、参考資料等を参照ください.

1 フロントエンドサーバにログイン

ログインサーバ(login.cc.tohoku.ac.jp)を経由してフロントエンドサーバにログイン します.

リモートログインの方法は,

センターホームページ「利用申請からログインまで」

https://www.ss.cc.tohoku.ac.jp/first-use/

をご参照ください.

2 Gaussian のインプットファイル

Gaussian に与えるインプットファイルを作成する方法は主に2通りあります. 1つは、テキストエディタで計算の操作や基底系、分子構造などを手入力で作成する方法、もう一つは GaussView などの Gaussian プリポストプロセッサにより GUI でデ ータを作成する方法です.前者については 参考資料[1] 付録 B 「Gaussian インプット の概要」等を、後者についてはそれぞれのソフトのマニュアルを参照ください.

インプットファイルを Windows のエディタで作成した場合, FTP ソフトで転送す る際には, 必ず**アスキーモード**で転送を行ってください.

また,作成したインプットファイルには,拡張子.com をつけてください.

ここでは、Gaussian に付随している例題ファイル **test0000.com** を例に使用します. 例題ファイルは /mnt/stfs/ap/g16/tests/com 下にあります.

以下に, Gaussian 用のディレクトリを作成し, 例題の test0000.com をコピーする 手順を示します.

[front1]\$	<u>mkdir Gaussian</u>
[front1]\$	cd Gaussian
[front1]\$	<pre>cp /mnt/stfs/ap/g16/tests/com/test0000.com ./</pre>
[front1]\$	<u>ls</u>
test0000.d	Com

test0000.com は水分子の全エネルギーを求めるインプットファイルです。

```
[front1]$ cat test0000.com
# SP, RHF/STO-3G punch=archive trakio scf=conventional
Gaussian Test Job 00
Water with archiving
0 1
0
H 1 0.96
H 1 0.96 2 109.471221
```

[並列実行の指定]

センターでサービスしている Gaussian では,128 並列までの並列処理が可能 です.大きな分子の解析にぜひご活用ください.

並列で実行するには, Link 0 section 行に %NProc=並列数 を追加してください. 手入力の場合は, テキストエディタで先頭行に追加, GaussView 等ではインプットファイル作成画面の Link 0 section の項に並列数を追加します.

例) test0000.com を 32 並列で実行する指定をした場合

```
[front1]$ cat test0000.com
%NProc=32
# SP, RHF/STO-3G punch=archive trakio scf=conventional
Gaussian Test Job 00
Water with archiving
0 1
0
H 1 0.96
H 1 0.96 2 109.471221
```

3 Gaussian の実行

Gaussian16は subg16 というコマンドに続けて、キュー名と、拡張子(.com)を除いたインプットファイル名を指定することで、ジョブとして計算が実行されます.

例) Gaussian16(最大 128 コア並列)で, インプットファイル test0000.com を実 行する.

```
[front1]$ subg16 -q lx -b 1 test0000
Request 30522.job1 submitted to queue: lx
```

ここで表示される数字(この例では 30522)は リクエスト ID といい,実行状況の表示や実行 取消の際に使われます. Gaussian はアプリケーション用の利用形態に投入します.

(subg16 のコマンド引数に -q lx -b 1 を指定してください。)

利用形態	利用可能並列数	最大経過時間	メモリ容量	-q オプション	-b オプション
共有	128 コア	既定值/最大值 72 時間/720 時間	256GB	lx	1 (1ノード実行)

4 実行状況の確認

実行状況は reqstat コマンドで確認できます.

```
[front1]$ reqstat
Request ID ReqName UserName QUEUE Pri STT S Memory CPU Elaps R H M jobs
30522.job1 job x20009 lx 0 RUN - 732.1B 4235 4236 Y Y Y 1
```

STAT が実行状況を示しています. **RUN** は実行中,**QUE** は待ち状態です. この場合,リクエスト ID 30522.job のリクエストは実行中です.

計算が終了すると,再度 reqstat コマンドを実行した際,

このように表示されるか,他に実行リクエストがある場合,該当リクエスト ID が一覧 表示から消えます.

実行を取り消すには qdel コマンドを用います.

[front1]\$ <u>qdel 30522.job1</u>
Request 30522.job was deleted

リクエスト関連のコマンドについては こちらも参照ください.

センターホームページ

「ジョブの実行方法」 https://www.ss.cc.tohoku.ac.jp/nqs/

5 実行結果

計算が終了すると、インプットファイル名に拡張子.log がつけられた結果ファイル (例: test0000.log)が作成されます.計算結果をはじめ、CPU 時間などの計算機使用 量に関する情報もここに含まれます. 正常終了ならば、このファイルの末尾に 「Normal termination of Gaussian 16」 というメッセージが出力されます.

ファイルの末尾を表示する tail コマンドで確認できます.

```
[front1]$ tail test0000.log
:
Job cpu time: 0 days 0 hours 0 minutes 30.7 seconds.
File lengths (MBytes): RWF= 11 Int= 0 D2E= 0 Chk= 8 Scr= 1
Normal termination of Gaussian 16 ...
```

結果ファイルの詳細な見方は、参考資料等を参照ください.

6 ユーティリティプログラム

主なユーティリティプログラムを示します./mnt/stfs/ap/g16 配下にあります。

chkchk	チェックポイントファイル内のルートセクション(ジョブタイプ,計算手法,用いる基底系)と、タイトルセクション(ジョブタイトル) を抜き出して表示します.
cubegen	チェックポイントファイルから Gaussian Cube 形式のファイルを作成 します.
cubman	cube ファイル上で,電子密度や静電ポテンシャル値を操作するのに用 います.
formchk	バイナリ形式のチェックポイントファイルをアスキーフォーマットに 変換します.
freqchk	チェックポイントファイルから,振動数,熱化学計算のデータを取り 出します.
freqmem	振動数計算時に必要とされるメモリー容量を得ることができます.
gauopt	最適化計算を繰り返し行います.
ghelp	Gaussian のオンラインヘルプです.
newzmat	PDB, MOPAC など, 各種ファイルフォーマットに対応したファイル変換 ツールです.
testrt	input ファイルに用いるルートセクションの記述を試すことができま す.記述が誤っている場合はエラーを表示します.
unfchk	(formchk ツールと反対に)アスキーフォーマットのチェックポイント ファイルをバイナリ形式に変換します.

それぞれの詳細は参考文献[2]の「Utility Programs」の章を参照ください.

7 Gaussian, GaussView 媒体貸出

Gaussian およびプリポストプロセッサ「GaussView」の媒体を、ご希望の方に配布しております.

お申し込み方法は,

「アプリケーションサービス/Gaussian, GaussView サイトライセンス」

https://www.ss.cc.tohoku.ac.jp/software-service/

をご覧ください.

8 参考資料

- [1] 電子構造論による化学の探求 第二版,ガウシアン社,1998
- [2] Gaussian プログラムによる量子化学計算マニュアル: 堀憲次, 丸善出版
- [3] すぐできる量子化学計算ビギナーズマニュアル:武次鉄也,講談社
- [4] すぐできる分子シミュレーションビギナーズマニュアル:長岡正隆,講談社
- [5] Gaussian プログラムで学ぶ情報化学・計算化学実験: 堀憲次, 丸善出版
- [6] Gaussian, Inc. https://gaussian.com/