Gaussian 講習会(端末機室)

実習資料

量子化学計算プログラム Gaussian が広く使われるようになった理由の1つに、 "使いやすさ"が挙げられます。実際の submit コマンドなどは、別紙「Gaussian の使い方」を参考にしていただきますが、まずは Gaussian を使うのに必要な入 力ファイルの作成の練習からスタートします。

実習1 分子座標の入力

Gaussian では分子座標を、xyz 座標入力、または、Z-matrix 入力で指定する。 ごく一部の分子を除いて、Z-matrix を用いた方が分子座標入力には便利なことが 多い。Z-matrix 入力において、分子構造は

- 結合距離
- 結合角
- 二面角

で表される。

なお、長さの単位はÅ、結合角の単位は degree が標準となっている。

例 1

ホルムアルデヒド (H2CO) の例

分子構造: R(C=O) = 1.22、R(C-H) = 1.1、A(H-C-H) = 120.0

C1

O1 C1 1.22

H1 C1 1.1 O1 120.

H2 C1 1.1 H1 120. O1 180.

(最後の 180.が△H2-C1-H1 と△C1-H1-O1 の二面角である。)

問題 1

- ・A(H-C-H) = 110.0 だと、どうなる?
- ・メタン (CH₄) の場合の座標入力は? R(C-H)=1.1、A(H-C-H)=109.5

実習2 入力ファイルの作成

H₂O 分子のエネルギーを計算する標準的なファイルを作ってみよう。 (UNIX 上でも、Windows 上でも構わない。)

例 2

#RHF/6-31G Pop=Full

Single point energy of H2O(この行はコメント行)

0 1

O1

H1 O1 0.95

H2 O1 0.95 H1 111.2

(ここまで。最終行に空行が必要です。)

問題 2

- ・1行目の6-31Gは基底関数である。分極関数を加えるときは?
- ・Pop=Full の意味は?
- ・コメント行の2行下の[0 1]は、[分子の電荷 スピン多重度]である。 スピン多重度(2S+1)の計算の仕方は?

実習3 様々なエネルギー計算

別紙「Gaussian の使い方」を見ながら、実際にエネルギーの計算を実行してみよう。

例3

結果の出力ファイルの末尾に"Normal termination of Gaussian 09"が見られるまでは、入力ファイルのエラーを訂正しながら計算を実行する。

出力ファイルの中に、

E(RHF) = -75.985355234 AU

などのエネルギー値を見つけよう。

(出力ファイルの見方は別刷「Gaussian94 を使った ab initio 分子軌道計算入門」 p.95-に詳しい)

問題3

基底関数依存性や、電子相関の効果をみるために、入力ファイルの1行目を変えて計算してみよう。

基底関数依存性:

RHF/6-31G E(RHF) =RHF/6-31G(D) E(RHF) =RHF/6-311G E(RHF) =

電子相関効果:

RHF/6-31G E(RHF) = MP2/6-31G EUMP2 =

B3lyp/6-31G E(UB+HF-LYP) =

実習4 エネルギーの変数依存性

キーワード scan を使うと、距離や角度を変数として連続的にエネルギー計算を行うことが出来る。入力ファイルの書き方に慣れて実際に計算してみよう。

例4

水分子の結合角 a1 を、 60° から+ 10° 刻みで変えながら 7 点について計算する。 #RHF/6-31G scan

Energy scan of H2O(コメント行)

0 1

01

H1 O1 0.95

H2 O1 0.95 H1 a1

a1 60. 7 10.

(ここまで)

出力ファイルの最後に Summary を見つけよう。

Summary of the potential surface scan:

N	a1	SCF
1	60.0000	-75.89821
2	70.0000	-75.92992
3	80.0000	-75.95419
4	90.0000	-75.97133
5	100.0000	-75.98153
6	110.0000	-75.98530
7	120.0000	-75.98356
8	130.0000	-75.97761

問題4

水分子の結合距離の scan を使って計算してみよう。

実習 5 分子の構造最適化と基準振動計算

分子の構造を計算で最適化することで、平衡構造を調べることが出来る。また、基準振動の計算を行うには、最適化された構造を用いなければならない。

例 5

水分子の構造を最適化し、基準振動を計算する。 #RHF/6-31G opt freq

Optimization and frequency calculation of H2O (コメント行)

0 1

O1

H1 O1 r1

H2 O1 r1 H1 a1

Variables:

r1 = 1.0

a1 = 110.0

(ここまで)

最適化された構造では、結合距離 0.9497 Å、結合角 111.5438° となる。また、以下のような振動数 (cm^{-1}) が得られたはずである。 A_1 対称性・・・1737.2249、3987.4570 B_2 対称性・・・4144.3601

問題 5

メタンの分子座標を最適化した後、NMR 化学シフトの計算を、キーワード "NMR"を使って計算してみよう。正しい分子座標と、大きな基底関数を使うことが重要である。

結果の例:

実習 6 GRRM による反応経路自動探索

Gaussian を利用して反応経路の自動探索を行うプログラム GRRM をテスト利用してみよう。新たにディレクトリ~/grrm/を作成し(mkdir grrm)、そのディレクトリへ移動(cd grrm)。

手順1 (構造最適化)

構造最適化を行うファイル min.com と、ジョブ投入用シェススクリプト example-min.sh を作成

●min.com ファイルの内容

MIN/B3lyp/6-31G

0 1			
H	-1.1	0.0	0.0
C	0.0	0.0	0.0
N	1.3	0.0	0.0

Options

GauProc=4

●example-min.sh ファイルの内容

#!/bin/sh

#PBS -q lx -b 1

#PBS -N grrm-test

 $source \ /usr/ap/etc/GRRM17/config.sh$

cd \$PBS O WORKDIR

GRRMp min -p1 -h2

(注:p1 は並列ジョブ数1を示す。)

qsub example-min.sh でジョブ投入。

得られた構造は、手順2のファイル grrm.com 内に記入する。

手順2 (遷移状態計算)

GRRM 計算を行うファイル grrm.com と、ジョブ投入用シェルスクリプト example-grrm.sh を作成

●grrm.com ファイルの内容(注:LADD=1 などのオプションを使って探索の精度を粗くしている。)

GRRM/B3LYP/6-31G

0 1

Н	-0.925542846402	-0.009966162953	0.066668872304
C	0.139313463373	0.036241860000	0.029013340192
N	1.306029383031	0.086868406955	-0.012245813674

Options

LADD=1

NLowest=24

NRUN=24

GauProc=2

(注: Gaussian の並列度を 2 としている)

●example-grrm.sh ファイルの内容 #!/bin/sh #PBS -q lx -b 1 #PBS -N grrm-test source /usr/ap/etc/GRRM17/config.sh cd \$PBS_O_WORKDIR GRRMp grrm -p4 -h3

(注1:GRRM の並列ジョブ数を 4 としている

→ Gaussian の並列度×GRRM の並列ジョブ数=8。)

(注2:センターの計算時間の制限を3時間と設定している)

結果

少しの計算時間(20分程度)の後、 $HCN\rightarrow HNC$ の異性化に対応する2つの構造が得られているだろう。

Global minimum = EQ 1, SYMMETRY = Cooh

Н	-0.413812173841	1.067547797749	0.000000000000
C	-0.058945456391	0.061798201572	0.000000000000
N	0.329934521480	-1.040145515356	0.000000000000

Second lowest minimum = EQ 0, SYMMETRY = Cooh

Н	-1.538344115186	0.362125764359	0.000000000000
C	0.608328955714	-0.039969200116	-0.000000000000
N	-0.557626952403	0.178402285344	0.0000000000000