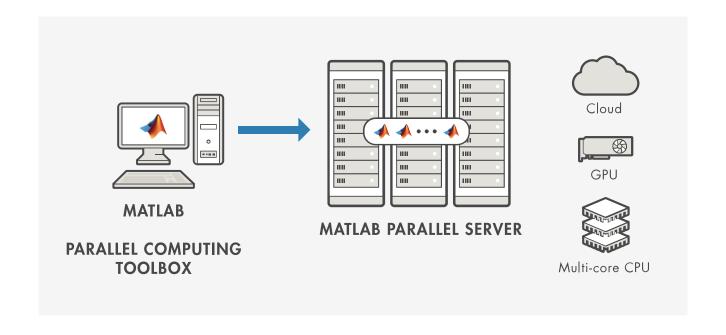


AOBA-B を利用した カンタン MATLAB 並列処理ハンズオンセミナー

2022/11/16
MathWorks Japan
アプリケーションエンジニアリング部 データサイエンスチーム
シニアアプリケーションエンジニア
齊藤 甲次朗 (ksaito@mathworks.com)



アジェンダ

- MATLAB の並列処理
- AOBA-B での MATLAB の利用
- AOBA-B での MATLAB の演習
- 参考情報

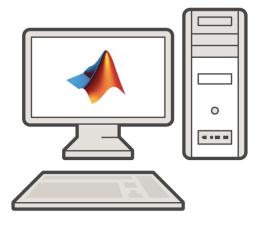
MATLAB の並列処理

並列処理って

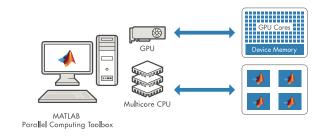
逐次実行

所要時間

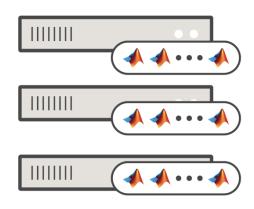
並列実行



所要時間


MATLAB の並列処理

MATLAB 本体のみ


線形代数演算や要素毎の 数値演算などの関数が自 動的にマルチスレッドで 処理されます

Parallel Computing Toolbox

並列処理に対応した
MATLAB コードがマルチ
プロセスまたはマルチス
レッド(R2020a から)、マ
ルチGPU で処理されます

MATLAB Parallel Server

ジョブスケジューラと連携し、並列処理に対応したMATLAB コードがマルチプロセス、マルチGPUで処理されます

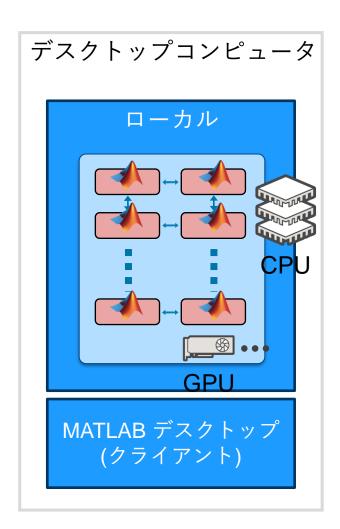
※Campus-Wide License では上記3 つの製品を全て使用できます

プロセスベースとスレッドベースの並列プール

プロセスベースの並列プール (従来どおり) スレッドベースの並列プール (R2020a 以降) parpool('threads') parpool プロセス プロセス スレッド プロセス スレッド間の高速な通信 スレッド データ転送 データ転送 プロセス プロセス メモリを共有 メモリ それぞれのメモリが独立 特徴 特徴 並列言語を完全にサポート 並列コードがスレッドベースの環境でサポートされている場 以前のリリースとの下位互換性 合は有効 クラッシュ時のより高いロバスト性 データ転送量が多い(>100 MB) 場合は有効 外部ライブラリをスレッドセーフにする必要なし メモリ使用量の削減、スケジューリングの高速化、データ転 複数台にまたぐ並列処理にも拡張可能 送の低減 1台のみの並列処理をサポート

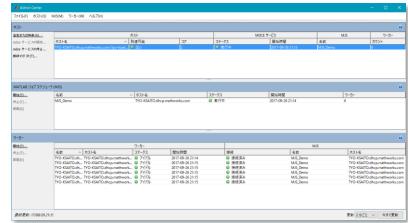
並列処理の種類

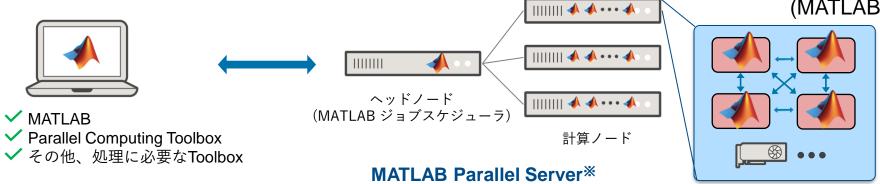
CPU	GPU	マシンの台数
		1 台
主なアプリケーション	主なアプリケーション 画像処理 ディープラーニング	複数台


Parallel Computing Toolbox

1台のマシンでのMATLAB関数及びSimulinkモデルの並列分散実行

- ローカルでの MATLAB & Simulink プロダクトファミリと 連携した並列処理による演算の高速化
 - 並列 for ループ
 - 並列アルゴリズムの使用
 - GPU 演算
 - バッチジョブの並列実行
- ジョブおよびタスクの制御
- ビッグデータ解析の分割処理
 - メモリに収まらないデータの扱い
 - スパース分散行列の作成
- 対話的な並列コマンドウィンドウ環境
 - pmode




MATLAB Parallel Server

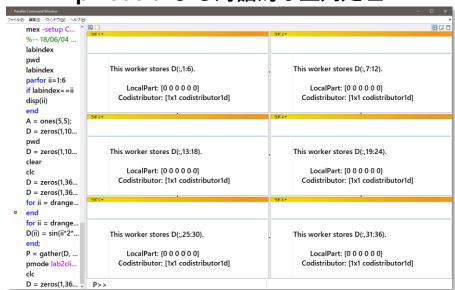
クラスター環境を利用したMATLAB 関数及びSimulink モデルの並列分散実行

- クラスターマシンのマルチCPU・GPU での並列処理
- 簡単に使えるスケジューラ(MATLAB ジョブスケジューラ)を内蔵
- サードパーティスケジューラとの連携
- Hadoop®・Spark®との連携によるビッグデータ処理
- クライアントの製品構成に依存しない計算環境を提供

GUI による簡単な操作 (MATLAB ジョブスケジューラ)

Hadoop/Spark との連携

並列処理の関数


1. インタラクティブジョブ

- parfor: 汎用的な並列処理

spmd: データを分割して同じ処理を実行 (single process multiple data)

- pmode: 対話的GUI を使った並列処理

parsim: 並列シミュレーション(R2017a以降)pmode による対話的な並列処理

parfor の例

```
n = 200;
A = 500;
a = zeros(n);
parfor i = 1:n
  a(i) = max(abs(eig(rand(A))));
end
```

spmd の例 (円周率の計算)

```
spmd
a = (labindex - 1)/numlabs;
b = labindex/numlabs;
fprintf('Subinterval: [%-4g, %-4g]¥n', a, b);
end

spmd
myIntegral = integral(@pctdemo_aux_quadpi, a, b);
fprintf('Subinterval: [%-4g, %-4g] Integral: %4g¥n', ...
a, b, myIntegral);
end

% 結果の合計
spmd
piApprox = gplus(myIntegral);
end
```


並列処理の関数

- 2. オフロードジョブ
 - バッチ:クラスターでMATLAB スクリプトを実行
 - 独立ジョブ:クラスターの1ワーカーで実行するジョブ
 - 通信ジョブ:クラスターの複数ワーカーで実行するジョブ

```
%クラスターの作成
c = parcluster();
%バッチ処理の実行
j = batch(c,@rand,1,{10,10}, 'CaptureDiary', ...
true, 'CurrentFolder', '.');
% ジョブの終了待ち
wait(j)
%ジョブ結果の回収
out = fetchOutputs(j);
%ジョブの消去
                      バッチの例
delete(i)
   % クラスターの作成
   c = parcluster;
   %ジョブの作成
   j = createCommunicatingJob(c,'Type', 'pool');
   % タスクの作成
   createTask(j, @myFunction, 1, {100});
   %ジョブの投入
   submit(j);
   % ジョブの終了待ち
   wait(j)
   % ジョブ結果の回収
   out = fetchOutputs(j)
   %ジョブの消去
   delete(j)
   %% カスタム関数
   function result = myFunction(N)
    result = 0;
    parfor ii=1:N
     result = result + max(eig(rand(ii)));
    end
                    通信ジョブの例
   end
```

```
%クラスターの作成
c = parcluster
%ジョブの作成
j = createJob(c);
%タスクの作成
for ii = 1:10
createTask(j,@rand,1,{10});
end
%ジョブの投入
submit(i);
%ジョブの終了待ち
wait(j);
%ジョブ結果の回収
out = fetchOutputs(j);
%ジョブの消去
delete(i)
         独立ジョブの例
```


Toolbox の関数での並列処理

関数のオプションで指定

```
optimoptions(..., 'UseParallel', true)
```

Optimization Toolbox

trainingOptions(..., 'ExecutionEnvironment', 'parallel')

Deep Learning Toolbox

既定のクラスタープロファイルの複数GPU、またはCPUを使用

アプリのオプションで変更

Statistics and Machine Learning Toolbox

Simulink の並列シミュレーションコマンドで

```
model = 'vdp';
in = Simulink.SimulationInput(model);
out = parsim(in)
%out = batchsim(in)
```


GPU 処理

gpuArrayの使用

```
% GPU上で配列を作成
GX = gpuArray(X);

% GPU上での演算
GY = fft2(GX);

% ローカルワークスペースへ転送
Y = gather(GY);
```

関数のオプションでGPU 配列を作成

ones(10,1,'gpuArray');

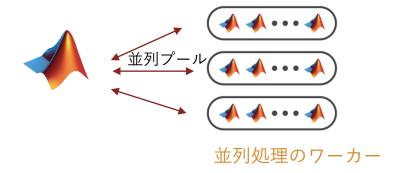
GPU 配列をサポートするToolbox

ツールボックス名	gpuArray をサポートする関数のリスト
MATLAB	gpuArray をサポートする関数
Statistics and Machine Learning Toolbox™	gpuArray をサポートする関数 (Statistics and Machine Learning Toolbox)
Image Processing Toolbox™	gpuArray をサポートする関数 (Image Processing Toolbox)
Deep Learning Toolbox™	gpuArray をサポートする関数 (Deep Learning Toolbox)
	*(GPU を使用した深層学習も参照)
Computer Vision Toolbox™	gpuArray をサポートする関数 (Computer Vision Toolbox)
Communications Toolbox™	gpuArray をサポートする関数 (Communications Toolbox)
Signal Processing Toolbox™	gpuArray をサポートする関数 (Signal Processing Toolbox)
Audio Toolbox™	gpuArray をサポートする関数 (Audio Toolbox)
Wavelet Toolbox™	gpuArray をサポートする関数 (Wavelet Toolbox)
Curve Fitting Toolbox™	gpuArray をサポートする関数 (Curve Fitting Toolbox)

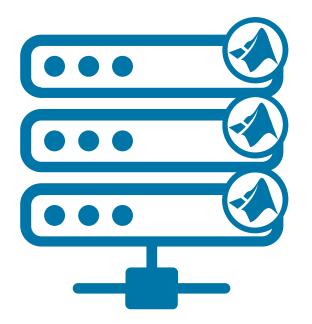
ディープラーニングは自動的にGPU で実行

- trainNetwork (Deep Learning Toolbox)
- predict (Deep Learning Toolbox)
- predictAndUpdateState (Deep Learning Toolbox)
- classify (Deep Learning Toolbox)
- classifyAndUpdateState (Deep Learning Toolbox)
- activations (Deep Learning Toolbox)

関数のオプションでも指定可能


```
trainingOptions(..., 'ExecutionEnvironment', 'gpu') 1台で複数GPUを使用trainingOptions(..., 'ExecutionEnvironment', 'multi-gpu')
```


クラスターサーバーへのジョブの投入の方法


インタラクティブジョブ

```
n = 200;
A = 500;
a = zeros(1,n);
parfor i = 1:n
   a(i) = max(abs(eig(rand(A))));
end
```


オフロードジョブ myparfor.m n = 200;A = 500;a = zeros(1,n);parfor i = 1:n a(i) = max(abs(eig(rand(A)))); end job = batch('myparfor', 'Pool', 3); wait(job) out = fetchOutputs(job); out = out $\{1\}$; 並列処理のワーカー

東北大学サイバーサイエンスセンター 大規模科学計算システム (AOBA)

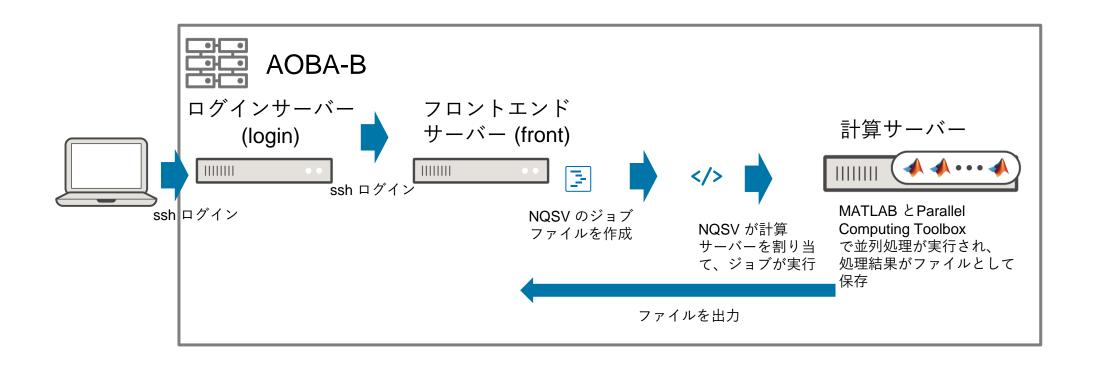
サブシステム AOBA-A (SX-Aurora TSUBASA)

クラウドサービス AOBA-C (SX-Aurora TSUBASA)

サブシステム AOBA-B

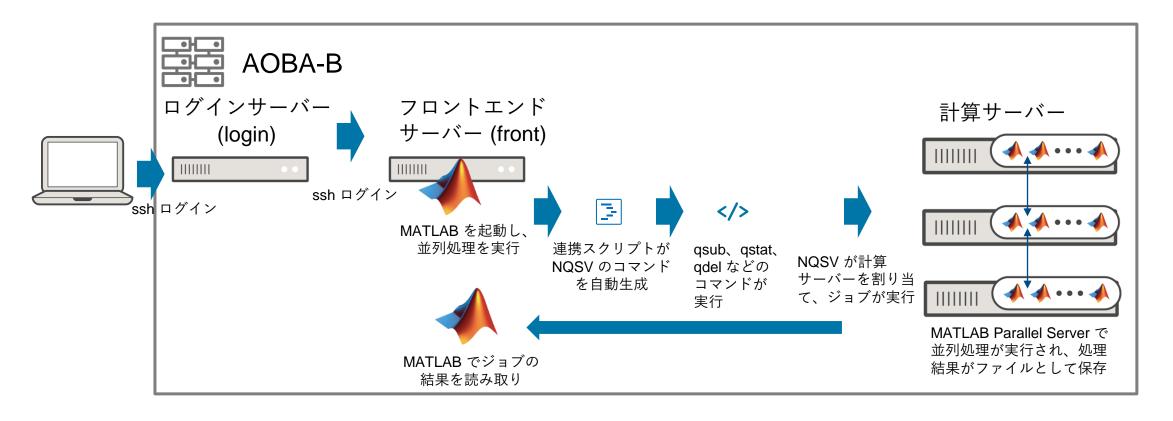
LX 406Rz-2 (AMD EPYC プロセッサ)が 68 ノード

東北大学サイバーサイエンスセンターのHPより転載 https://www.ss.cc.tohoku.ac.jp/lx406rz-2/


AOBA-B のマシンでMATLAB 及び MATLAB Parallel Server が使えます

ジョブスケジューラはNEC Network Queuing System V (NQSV)

MATLAB とMATLAB Parallel Server とも R2020a、R2020b、R2021a、R2022a が 利用可能 (2022年11月現在)


1 台ずつの処理 (1 ノード内実行)

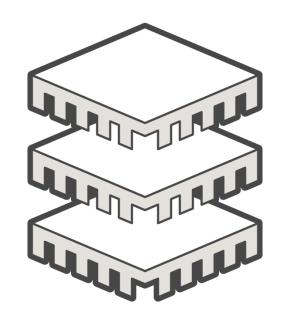
演習1で体験します

複数台にまたがる処理

演習2で体験します

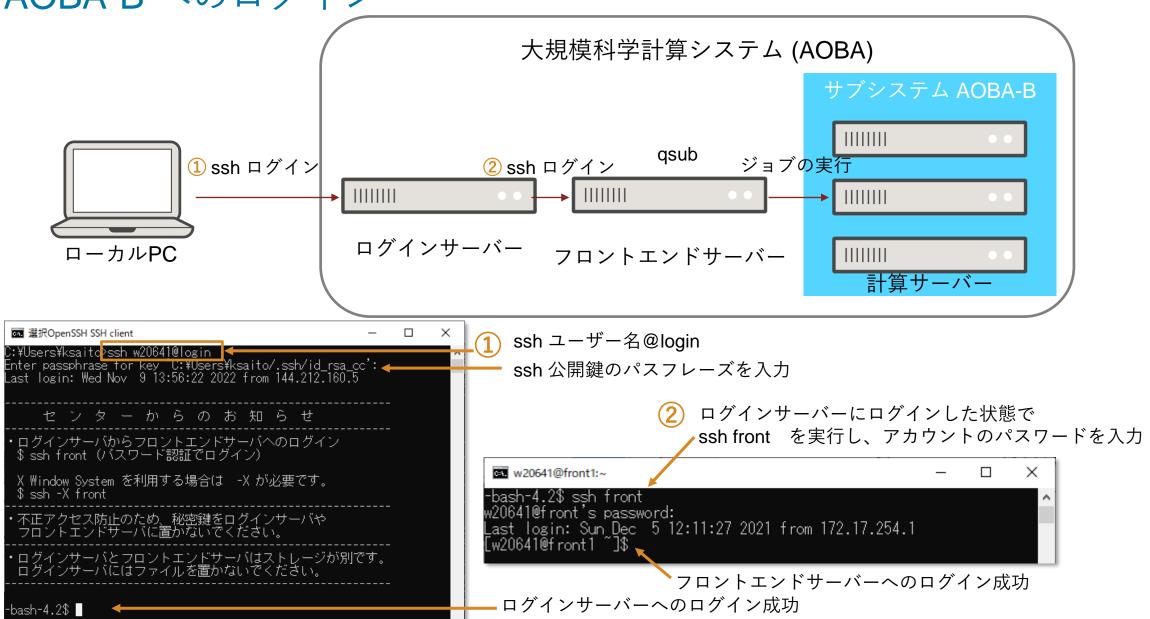
コマンドライン (CUI) でのMATLAB の起動

- MATLAB はコマンドライン(CUI) と画面で操作するGUI のどちらでも利用できます
- GUI で使用するにはX11 やVNC での画面転送が必要になります*1)



- この講習会ではコマンドラインでの演習とします
 - リモートだと画面転送のタイムラグがあるため

^{*1)} 画面転送についてはアプリケーションサービスの紹介 の「2.4が画面転送する場合」参考



AOBA-B でのMATLAB の演習

AOBA-B へのログイン

事前準備 ファイルの転送

AOBA-B のサーバーにscp でファイルを転送します ローカルPC のターミナルで実行

```
scp ./MATLAB_HandsOn.zip front:~/
```

```
$ scp ./MATLAB_HandsOn.zip front:~/
Enter passphrase for key '/c/Users/ksaito/.ssh/id_rsa_cc':
Enter passphrase for key '/c/Users/ksaito/.ssh/id_rsa_cc':
MATLAB_HandsOn.zip 100% 244KB 1.5MB/s 00:00
```

AOBA-B のサーバーにssh ログインしてzip を解凍します ローカルPC のターミナルで実行 ssh front

フロントエンドサーバーのターミナルで実行

unzip ./MATLAB_HandsOn.zip

```
[w20641@front2 ~]$ unzip ./MATLAB_HandsOn.zip
Archive: ./MATLAB_HandsOn.zip
    creating: MATLAB_HandsOn/
    creating: MATLAB_HandsOn/ex1/
    creating: MATLAB_HandsOn/ex2/
    inflating: MATLAB_HandsOn/ex2/monteCarloFunc.m
    inflating: MATLAB_HandsOn/ex2/monteCarloSample.m
    inflating: MATLAB_HandsOn/ex2/monteCarloSampleLiveScript.mlx
    inflating: MATLAB_HandsOn/ex2/monteCarloSampleLiveScript.pdf
    inflating: MATLAB_HandsOn/ex2/ReadMe.txt
    inflating: MATLAB_HandsOn/ex2/updateScatter.m
```


【演習1】1台ずつの処理(1ノード内実行)

MATLAB スクリプトの作成 ex1.m

MATLAB & Parallel Computing Toolbox

```
p=parpool('local',4);
n = 500;
A = 100;
a = zeros(1,n);
parfor k = 1:n
a(k) = max(abs(eig(rand(A))));
end
delete(gcp('nocreate'))
```

• ジョブファイルの作成 *1)

ex1job.nqs

```
#!/bin/sh
matlab -batch "ex1"
```

ex1run.sh

```
#!/bin/sh#
PBS -l elapstim_req=00:10:00 # 最大経過時間
#PBS -q lx_edu -b 1 # 投入キュー名と利用ノード数1を指定
#PBS -jo -N lx_edu # 出力ファイル名を指定
cd $PBS_O_WORKDIR # 作業ディレクトリへの移動コマンド
ex1job.nqs # nqsに書かれたMATLABのジョブを実行
```


【演習1】1台ずつの処理(1ノード内実行)

実行権限の付与

フロントエンドサーバーのターミナルで実行

chmod u+x ex1*

■ ジョブ(バッチリクエスト)の投入

qsub ex1run.sh

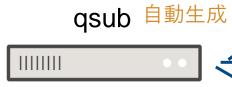
[w20641@front2 ex1]\$ qsub ./ex1run.sh ブロジェクトコード: center01 にリクエストを投入します Request 393810.job_submitted to queue: lx_edu.

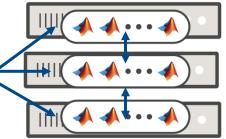
• ステータスの確認 regstat

• 結果の確認

cat lx*

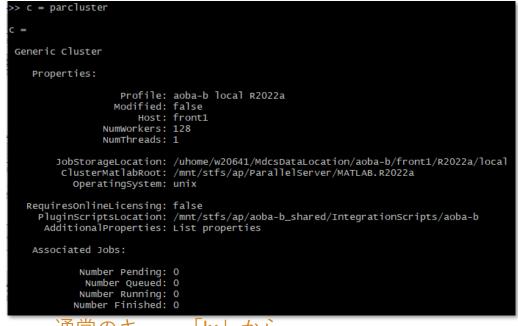
```
[w20641@front2 ex1]$ ls -l
合計 302
-rwxr--r-- 1 w20641 ccusers 135 11月 16 09:57 ex1.m
-rwxr--r-- 1 w20641 ccusers 30 11月 16 09:53 ex1job.nqs
-rwxr--r-- 1 w20641 ccusers 284 11月 16 09:47 ex1run.sh
-rw-r--r-- 1 w20641 ccusers 176 11月 16 10:22 lx_edu.o393810
```


[w20641@front2 ex1]\$ cat lx*
Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 4).
Parallel pool using the 'local' profile is shutting down.



【演習2】複数台にまたがる処理

Parallel Server を使用するための設定


MATLAB Parallel Server

MATLAB Parallel Server

MATLAB Parallel Server

- MATLAB を起動 フロントエンドサーバーのターミナルで実行 matlab -nodesktop
- クラスタープロファイルの設定MATLAB のコマンドウィンドウで実行
 - >> addpath('/mnt/stfs/ap/aoba-b_shared')
 - >> configCluster
- プロファイルの確認
 - >> c = parcluster
- キューの変更

```
>> c.AdditionalProperties.QueueName = 'lx_edu';
```


通常のキュー「Ix」から、 講習会用のキューに変更します

サイバーサイエンスセンター「AOBA-B でのMATLAB Parallel Serverの使い方.pdf | より引用

【演習2】複数台にまたがる処理

モンテカルロ・シミュレーション

モンテカルロ法 (モンテカルロ・シミュレーション)

- 乱数を生成してシミュレーションや数値計算をおこなう手法の総称
- カジノで有名なモナコ公国の地名「モンテカルロ」から

MATLAB スクリプトの作成

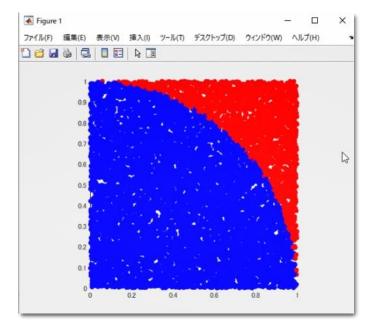
monteCarloSample.m

```
%% モンテカルロ法による円周率の計算
iteration = 10000;
withPlot = false;
[myPi, elapsedTime] = monteCarloFunc(iteration, withPlot);
fprintf('Estimated Pi: %2.7f¥n', myPi);
fprintf('Elapsed time: %8.2f seconds¥n', elapsedTime);
```

並列for 文で計算

```
parfor n = 1:iter

x = R * rand(1);
y = R * rand(1);
if x^2 + y^2 < R^2
        count(n, 1) = 1;
end
end
```



【演習2】複数台にまたがる処理

モンテカルロ・シミュレーション

- インタラクティブジョブで投入 MATLAB のコマンドウィンドウで実行
 - >> monteCarloSample

```
[w20641@front2 ex2]$ matlab -nodesktop
MATLAB is selecting SOFTWARE OPENGL rendering.
                                < M A T L A B (R) >
                      Copyright 1984-2022 The Mathworks, Inc.
                      R2022a (9.12.0.1884302) 64-bit (glnxa64)
                                 February 16, 2022
To get started, type doc.
For product information, visit www.mathworks.com.
>> 1s
                                               monteCarloSampleLiveScript.pdf
ReadMe.txt
                 monteCarloSample.m
monteCarloFunc.m monteCarloSampleLiveScript.mlx updateScatter.m
>> monteCarloSample
Starting paralle pool (parpool) using the 'aoba-b local R2022a' profile ...
additionalSubmitArgs =
    '-b 1 -T intmpi -q lx -l elapstim_req=24:00:00 -r n'
Estimated Pi: 3.1356000←── 円周率の近似値が得られました
Elapsed time:
                15.16 seconds
```


GUIありで実行した場合

参考情報

■ 参考情報

- MATLAB Parallel Server の製品について https://jp.mathworks.com/products/matlab-parallel-server.html
- MATLAB の並列処理について
 https://jp.mathworks.com/help/parallel-computing/getting-started-with-parallel-computing-toolbox.html
- MATLAB のバッチ処理のサンプル
 https://jp.mathworks.com/help/parallel-computing/batch-processing.html

■ 問い合わせ窓口

- MathWorks サポート窓口
 https://jp.mathworks.com/support/contact_us.html
- コミュニティ Q&A サイトhttps://jp.mathworks.com/matlabcentral/answers/

© 2022 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.