[共同研究成果]

複数領域 FDTD 法を用いた大規模モデル電磁界散乱特性の解析

有馬 卓司, 宇野 亨 東京農工大学 大学院工学研究院 先端電気電子部門

現在、様々な電子機器において電磁波の利用が広がっている.この電磁波を効率よく利用する には、電磁界解析を用いて電磁波の放射・伝搬などを精度よくシミュレーションし、常に安定し て電磁波を送受信できるように設計することが重要である.主要な電磁界解析手法の一つに FDTD (Finite Difference Time Domain)法があるが、この手法は一般的に解析対象が大きくなると 莫大な計算時間が必要になる.特に電磁波の放射源と散乱体が離れている時の電磁界解析には莫 大な計算時間が必要となる.本稿では、FDTD 法における解析領域を複数に分ける複数領域 FDTD 法を用いて大規模モデルの解析を行いその有効性を示している.

1. はじめに

電磁波の応用範囲はますます広がっている.これまで電磁波の応用は情報通信が主であったが, 近年電力を電磁波で伝送する無線電力伝送技術や、飛行機などの飛翔体を安全に運行するための レーダ技術など,情報通信以外にも広く使用されている.特に自動車に対するレーダの普及は急 速に広がっており、限定的ながら自動運転が可能な市販車が登場している.また、軽自動車など にもレーダは普及しつつあり、安全性の観点より全車に装備する事が義務化される日も遠くない と考える.一方,これら電磁波を用いた機器において,効率よく電磁波を利用するには精密な設 計が必要となる.設計方法としては,実験的手法と電磁界解析を用いたシミュレーションによる 手法があるが、時間とコストの観点よりシミュレーションによる手法の方が有効である、電磁界 解析手法は,モーメント法[1],有限要素法[2],FDTD法(Finite Difference Time Domain method) [3,4]などがある.これら手法はそれぞれが長所と短所を有するが、なかでも FDTD 法は容易に複 雑なモデルを比較的容易に解析できる手法である. さらに FDTD 法は時間領域の解析手法であるた めに,刻々と変化する電磁波の放射・伝搬現象について時間を追って調べることができる.また, FDTD 法はマクスウエルの方程式と呼ばれる電磁界を支配する方程式のうち、アンペアの法則とフ ァラデーの法則の2つを時間領域で、空間と時間について直接差分する差分法である、このため に多くの計算時間・計算メモリが必要となることが知られている. さらに電磁波はベクトル場で あり、電界ベクトルと磁界ベクトルによって構成される. 3次元空間では電界磁界がそれぞれ3 成分を持つことになりこれは多くのメモリを必要とすることを意味する.本稿ではレーダなどの 電磁波を放射する波源と、レーダで検出する対象である散乱体が離れているモデルの解析を目的 としている.これは大規模モデルとなり, FDTD 法での解析は非常に大きな計算時間が必要となる. FDTD 法はモーメント法と異なり、解析空間全体を解析する手法であり、空気など媒質が何もない 空間も計算が必要である.しかし,空気中での電磁波の伝搬についてはその特性が良く分かって いるので数学的にその伝搬を解析し、散乱体の近傍で電磁波の振る舞いを再構成することも可能 である.この手法は解析領域を放射源と散乱体の領域に分けることから複数領域 FDTD 法[5,6]と 呼ばれる、本稿ではこの手法について検討している. FDTD 法のアルゴリズムおよびプログラムは 本手法を用いても大規模モデルとなることから,高速計算技術は必要不可欠である.そこで,FDTD 法のプログラミング技術による高速化について、東北大学サイバーサイエンスセンターの多大な 協力を得た.

2. 複数領域 FDTD 法

図1 FDTD 法における解析領域(左)と解析領域を構成する単位電磁界配置(右)

2.1 FDTD 法

図1に FDTD 法の解析領域と解析領域を構成する単位電磁界配置を示す. FDTD 法においては, まず解析領域を決め,その解析領域内を各方向の長さΔx,Δy,Δz で構成される微小立方体に分け る.この微小立方体は FDTD 法においてセルと呼ばれる.そしてこのセル内に図1 右図に示すよう に電界ベクトル,磁界ベクトルの各成分を配置する.このように FDTD 法において,各電磁界成分 は同じ場所には配置されていない.そしてこれら電磁界に対してマクスウエルの方程式のうち下 記に示すファラデーの法則と,アンペアの法則を差分し適用する.

$$\nabla \times \boldsymbol{E}(\boldsymbol{r},t) = -\frac{\partial \boldsymbol{B}(\boldsymbol{r},t)}{\partial t}$$
$$\nabla \times \boldsymbol{H}(\boldsymbol{r},t) = \frac{\partial \boldsymbol{D}(\boldsymbol{r},t)}{\partial t} + \boldsymbol{J}(\boldsymbol{r},t)$$

ここで、E.H.B.D.J.r.t はそれぞれ電界ベクトル、磁界ベクトル、磁束密度、電束密度、電 流密度,位置ベクトル,時間である.FDTD 法は前述したように時間領域の手法であるが,FDTD 法においては電界と磁界は計算する時間をずらしている.そのため、ある時間の電界を求めその 値を元に次の時間の磁界を求めるという計算をしている。そしてその計算を繰り返すことにより 順次電磁界の時間変化を求める事が出来る.また、周波数領域の値が必要な時はフーリエ変換す ることにより容易に求める事が出来る.次に FDTD 法の計算に必須の吸収境界条件について述べる. FDTD 法においては閉領域の解析であり、非常に大きな空間中に置かれた放射源や散乱体の解析を 行うには、解析領域を反射がない仮想的な境界で閉じておく必要がある。この仮想的な境界を吸 収境界(Absorbing Boundary Condition: ABC)という.この条件が不完全であると,境界で反射 が起こり、解析結果に顕著な誤差を生じる. FDTD 法において、吸収境界条件は解析精度に影響を 与えることから、様々な手法が提案されてきた、本稿では、その中でも最も有効であるとされる Berenger の PML (Perfectly Matched Layer)を用いる. Berenger の PML 吸収境界条件は,必要と される計算機資源が増加するが、最も有効な吸収境界条件である. PMLの基本概念は解析空間の インピーダンスと整合の取れた仮想的な損失媒質を考える.するとこの仮想媒質に入射した電磁 波は反射することなく、さらに仮想媒質中を進むにつれて減衰する.よって解析空間から見ると 電磁波が吸収され、吸収境界が実現できる.吸収境界を含むFDTD法の詳細は、文献[4,5]に記載 されているので参照していただきたい.

2.2 複数領域 FDTD 法

図 2 複数領域 FDTD 法の概念. 解析領域を散乱体(左)と自動車(右)に分ける. それぞれの領域は数学的に結合させるため,領域同士の間の空間は FDTD 法では計算をしていない.

複数領域 FDTD 法とは,図2に示すように異なる解析領域を設け,各領域の電磁界を等価定理 によって接続し,空間的に離れた領域を解析する手法である.ただし,等価面の外部は散乱界計 算領域となっている.解析領域を分けることで解析対象が存在しない空間における計算を省くこ とができ,計算機資源を削減することができる.各領域で行う解析はFDTD 法と同様であるから, 各領域を接続する際に行う計算手法のみ示す.複数領域 FDTD 法においては図3に示すようにそれ ぞれの解析領域で等価面および積分面と呼ばれる仮想的な閉曲面を考える.積分面をS'とする と,等価面S上の電磁界は次式で計算できる.

$$\begin{split} \boldsymbol{E}(\boldsymbol{r},\boldsymbol{\omega}) &= \int_{S'} \left[-j \boldsymbol{\omega} \boldsymbol{\mu} \left\{ \hat{\boldsymbol{n}}' \times \boldsymbol{H}'_{S'}(\boldsymbol{r}',\boldsymbol{\omega}) \right\} \boldsymbol{G}(\boldsymbol{r}-\boldsymbol{r}') - \left\{ \boldsymbol{E}'_{S'}(\boldsymbol{r}',\boldsymbol{\omega}) \times \hat{\boldsymbol{n}}' \right\} \times \nabla' \boldsymbol{G}(\boldsymbol{r}-\boldsymbol{r}') \\ &+ \left\{ \hat{\boldsymbol{n}}' \cdot \boldsymbol{E}'_{S'}(\boldsymbol{r}',\boldsymbol{\omega}) \right\} \nabla' \boldsymbol{G}(\boldsymbol{r}-\boldsymbol{r}') \right] \mathrm{d}S' \end{split}$$

$$H(\mathbf{r},\omega) = \int_{S'} \left[-j\omega\varepsilon \{ \mathbf{E}'_{S'}(\mathbf{r}',\omega) \times \hat{\mathbf{n}}' \} G(\mathbf{r}-\mathbf{r}') + \{ \hat{\mathbf{n}}' \times \mathbf{H}'_{S'}(\mathbf{r}',\omega) \} \times \nabla' G(\mathbf{r}-\mathbf{r}') + \{ \hat{\mathbf{n}}' \cdot \mathbf{H}'_{S'}(\mathbf{r}',\omega) \} \nabla' G(\mathbf{r}-\mathbf{r}') \right] dS'$$

ここで、Gはグリーン関数と呼ばれる既知の関数である.このように数学的手法により離れたところでの電磁界を計算する事が出来る.この考え方を元に、FDTD法で計算した片方の計算領域の 電磁界を基に等価面上の電磁流を算出し、それを他方の解析領域の波源とすることで異なる領域 からの放射界を考慮する事が出来る.同様の手順より、図3に示すように解析領域Rから解析領 域R'への放射界を算出することで、解析領域間の相互影響を考慮することができる.FDTD法で の面積分は、単位セルの面の値を足し合わせることで行われることから、1タイムステップあた りの計算は積分面と等価面上のセル数に依存する.したがって、解析対象が大きい場合、計算機 資源が膨大となる.

図3 複数領域 FDTD 法におけるそれぞれの解析領域と結合方法

3. 解析結果

図4 解析モデル:通常の解析モデル(左) 複数領域 FDTD 法でのモデル(右)

図4に示すモデルを解析した結果を示す.このモデルは解析空間に対し斜めにアンテナが配置 されており,そこから離れた点での電界を計算するモデルである.図4左図に示す通常のFDTD 法のモデルに対し,右図では解析領域を二つに分けている.アンテナから連続波を励振し図4中 に示す点での電界の時間変化を解析した.アンテナからは16Hzの正弦波を入力している.解析領 域1 (Region1)と解析領域2 (Region2)それぞれの中心間の距離を0.3mとしている.2節で述 べたように吸収境界はそれぞれの領域でPMLを用いている. Region1の領域においてはセルの1 辺を3mmとし,Region2のセルの1辺を3mm,6mm,9mmと変化させた.複数領域FDTD法では、こ のように領域ごとで異なるセルサイズを用いる事が出来る.このモデルでのRegion2の電界分布 を図5に示しす.図5においては、左図にRegion2において等価面によりRegion1から電磁界が 生成される様子,右図にRegion2における電界の時間変化を示す.右図では通常のFDTD法による 解析結果を赤色の実線、複数領域FDTD法で,解析空間ごとのセルサイズ比が1:1の解析結果を青 色の破線、セルサイズ比が1:2の解析結果を緑色のバツ、セルサイズ比が1:3の解析結果を紫色 の四角で示した.図5で示す電界は電界ベクトルの各成分の絶対値としている.このように複数 領域FDTD法を用いても計算精度は、通常のFDTD法と変わらないことが分かる.また、領域ごと のセルサイズを変えても計算精度は変化しない.

図5 複数領域 FDTD 法による解析結果

4. まとめ

本稿においては、アンテナなどの放射源と散乱体が離れている大規模モデルを効率よく解析する手法について述べた.この手法は複数領域 FDTD 法と呼ばれ、解析領域を分けそれぞれの領域を数学的に結合する手法であった.解析結果は通常の FDTD 法による結果とよく一致していた.以上より本手法は大規模モデルの解析に有効と考える.

謝辞

本研究は、東北大学サイバーサイエンスセンターの協力を頂き実施した.特に東北大学サ イバーサイエンスセンターのスーパーコンピュータを利用することで効率的に研究を行うこ とができた.また、FDTD 法のプログラムの高速化にあたっては同センター関係各位に有益な ご指導とご協力をいただいた.

参考文献

[1]]R.F. Harrington: Field Computation by Moment Methods, Macmillan, 1968

- [2] M. V. K. Chari and P. P. Silvester, "Finite Elements in Electrical and Magnetic FieldProblems," John Wiley & Sons, 1980S. Tretyakov, "Analytical Modelling in Applied Electromagnetics." Artech House Inc, 2003.
- [3] 宇野亨, FDTD 法による電磁界およびアンテナ解析, コロナ社, 1998.
- [4] 宇野亨,何一偉,有馬卓司,数値電磁界解析のための FDTD 法, コロナ社, 2016.
- [5] P.Bernardi ,M.Ca "2002 FDTD, multiple-region FDTD, ray-tracing FDTD a comparison on their applicability for human exposure evaluation" International Journal of Numerical Modelling 2002; 15:579-593.
- [6] J. Michael Johnson and Yahya Rahmat-Samii, "MR/FDTD: A multiple-region finite-difference-time-domain method," Microwave and Optical Technology Letters, vol. 14, No. 2, pp. 101-105, February 1997.