[共同研究成果]

近傍界領域におけるリフレクトアレーの設計法

今野 佳祐[†], 陳 強[†] 東北大学大学院工学研究科 通信工学専攻[†]

1 まえがき

次世代無線通信システムにおいて、ミリ波帯のような高周波帯の利用が想定されてい る.このような高周波帯を利用すると、高速、大容量、低遅延の無線通信システムが実現 できるという利点がある.高周波帯を用いた無線通信システムの実現のため、様々なアン テナの研究がなされている.

リフレクトアレーは、このような高周波帯における無線通信実現のための重要な技術の 1つである [1]-[3]. リフレクトアレーは、無数の反射素子から成る散乱体であり、一次放 射器から放射される電磁波により空間的に給電される. 各反射素子は、一次放射器から入 射した電磁波の位相を回転させ、全ての素子の散乱電界の位相が所望の方向で同相になる ように設計される. 一般に、散乱体の主ビーム方向は Snell の法則にしたがうので、入射 波の入射角によって自動的に決まる. その一方で、リフレクトアレーの主ビーム方向は入 射波の方向と独立して設計することが可能であるという利点がある.

このようなリフレクトアレーを用いると、電磁波の届かない不感地帯あるいはカバレッ ジホールにある端末に電磁波を向けることができる.例えば、リフレクトアレーを用いて 市街地の電波環境を改善できることが明らかにされている [4]-[6].また、周波数選択板を 導入することで、複数の周波数帯域で動作するリフレクトアレーの設計が可能であること も明らかにされている [7].これらの研究では、端末はリフレクトアレーの遠方に位置し、 所望の方向で各素子の遠方界が同相になるようにリフレクトアレーが設計されている.そ の一方で、次世代無線通信システムで利用される高周波では、高い伝搬損失を補うため、 大型で高利得なリフレクトアレーが利用される.リフレクトアレーが大型のとき、端末は 必ずしもリフレクトアレーの遠方にはなく、リアクティブな近傍界領域やフレネル領域に 位置することがある.したがって、高周波での大型のリフレクトアレーの設計は、従来の ような遠方界の設計法では不十分である.

そこで本研究では,近傍界領域におけるリフレクトアレーの設計法を提案する.提案設計法は,近傍界領域にある焦点で電界を同相にする方法であり,一次放射器とリフレクトアレー素子,リフレクトアレー素子と焦点間の位相を厳密に考慮した設計法である.提案設計法を用いてリフレクトアレーを設計し,従来の遠方界を用いた設計法との比較を行い,その有効性を明らかにする.

図 1: 反射板付き面状ダイポールアンテナの反射係数.

2 リフレクトアレーの設計法

まず,リフレクトアレーの設計の前に,リフレクトアレー素子の反射係数を求める.リフレクトアレー素子は無限大の反射板に裏打ちされた面状ダイポール阻止である.リフレクトアレー素子の反射係数は,周期グリーン関数を用いたモーメント法によって無限周期構造を数値解析することで求める [8,9].周期グリーン関数の収束性の悪さは,Ewald 変換を用いて改善する [10]-[12].波源と観測点が一致する点における特異性は,ロピタルの定理を用いて緩和する [13,14].基底関数と試行関数には,いずれも Rao-Wilton-Glisson (RWG) 基底関数を用いる [15].

無限大の反射板に裏打ちされた面状ダイポール素子の反射係数の位相の数値シミュレー ション結果は図1に示す.面状ダイポール素子の長さが変わるにつれて,反射係数の位相 が変化していることが分かる.位相の変化量は約280°ほどであった.

数値シミュレーションによって得られたリフレクトアレー素子の反射係数を用いて,近 傍界領域に焦点を有するリフレクトアレーを設計する.従来および提案するリフレクトア レー設計法は図2に示す.遠方界に焦点があるリフレクトアレーは,ある特定の角度でリ フレクトアレー素子の散乱界が同相になるように設計されている.リフレクトアレーの散 乱界が遠方界領域にある焦点に向いているので,リフレクトアレー素子間の空間位相遅延 差を表現するのにアレーファクタが適用できる.その一方で,近傍界に焦点があるリフレ クトアレーは,ある焦点でリフレクトアレー素子の散乱界が同相になるように設計されて いる.リフレクトアレーの散乱界が近傍界領域にある焦点に向いているので,リフレクト アレー素子間の空間位相遅延差を表現するのにアレーファクタは適用できない.したがっ て,提案法では,リフレクトアレー素子間の空間位相遅延差を表現するのにリフレクトア レー素子間の厳密な距離が用いられる.図1に示す反射係数の位相を用いて,リフレクト

図 2: 従来および提案するリフレクトアレーの設計法.

アレー素子の電界が焦点で同相になるように面状ダイポール素子の長さが決められる.

3 リフレクトアレーの散乱特性

提案法を用いて,21×21のリフレクトアレーを設計し,その散乱特性を数値的に明ら かにした.無限大の反射板を効率的にモデリングするために,設計したリフレクトアレー の数値解析は,多層媒質のグリーン関数を用いたモーメント法を用いて行われた[16].多 層媒質のグリーン関数の収束性を改善するため,波源からの直接波の成分は Sommerfeld 積分から取り除かれ,スペクトル領域でなく空間領域で評価される[17,18]. Sommerfeld 積分は数値シミュレーションの前に予め求めておき,テイラー展開を用いて補間するこ とで必要な値を得る[19,20]. Sommerfeld 積分の数値計算コストを減らすために,ベッセ ル関数の漸近展開が用いられる.基底関数と試行関数には RWG 関数が用いられ,波源と 観測点が一致する点での特異性は座標変換と解析積分を用いた方法によって緩和される [15, 21, 22].

リフレクトアレーの近傍界の数値シミュレーション結果は図3に示す通りである.提案 法によって設計されたリフレクトアレーは,焦点での電界強度が強くなっている一方で, 従来の方法で設計されたリフレクトアレーは,単に遠方界領域におけるブロードサイド方 向ヘビームが向いているだけである.以上のように,提案法を用いると,近傍界領域にあ る特定の焦点で電界強度の強いリフレクトアレーを設計することができる.

4 まとめ

本報告では,近傍界領域に焦点を有するリフレクトアレーを設計するための手法を提案し,設計したリフレクトアレーの散乱特性をモーメント法によって数値的に明らかにし

図 3: 設計したリフレクトアレーの近傍界分布 (左:遠方界領域においてブロードサイド 方向にビームを向けているリフレクトアレー,右:ある焦点で電界を同相にしているリフ レクトアレー, $y = 7\lambda$, E_y 成分).

た.数値シミュレーションの結果から,従来法で設計したリフレクトアレーと比較して, 提案法で設計したリフレクトアレーの方が,近傍界領域にある焦点において強い電界強 度を実現できることが分かった.今後は,提案手法を更に拡張した高機能なリフレクトア レーの設計法の研究や,スーパーコンピューターを活用した大規模リフレクトアレーの数 値解析法の研究などを行っていく予定である.

謝辞

本研究を遂行するのに用いたプログラムの一部は,東北大学サイバーサイエンスセン ターのサポートを受けて作成したものである.東北大学サイバーサイエンスセンターのス タッフをはじめ,関係各位に深謝する.

参考文献

 D.G. Berry, R.G. Malech, and W.A. Kennedy, "The Reflectarray Antenna," IEEE Trans. Antennas Propag., vol.11, no.6, pp.645-651, Nov. 1963.

- [2] J. Huang, "Analysis of a microstrip reflectarray antenna for microspacecraft applications," TDA Progress Report 42-120, Feb. 1995, pp. 153-173.
- [3] J. Huang and J.A. Encinar, Refrectarray Antennas, John Wiley and Sons, 2008.
- [4] L. Li, Q. Chen, Q. Yuan, K. Sawaya, T. Maruyama, T. Furuno, and S. Uebayashi, "Novel broadband planar reflectarray with parasitic dipoles for wireless communication applications," IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 881-885, 2009.
- [5] Q. Chen, "Reflectarray development for improving NLOS radio channel," in Proc. Asia-Pacific Microwave Conference 2013 (APMC2013), pp. 654-656, 2013.
- [6] Q. Chen, "Experimental study of improving wireless propagation channel by using reflectarray," in Proc. International Workshop on Electromagnetics 2014 (iWEM2014), pp. 102-103, 2014.
- [7] L. Li, Q. Chen, Q. Yuan, K. Sawaya, T. Maruyama, T. Furuno, and S. Uebayashi, "Frequency selective reflectarray using crossed-dipole elements with square loops for wireless communication applications," IEEE Trans. Antennas Propag., vol. 59, no. 1, pp. 89-99, Jan. 2011.
- [8] M. G. Floquet, "Sur les équations différentielles linéaires à coefficients périodiques," Annale École Normale Siiperieur, pp. 47-88, 1883.
- [9] B. A. Munk, Frequency Selective Surfaces: Theory and Design, New York, NY, USA: Wiley, 2000.
- [10] P. P. Ewald, "Dispersion und Doppelbrechung von Elektronengittern (Kristallen)," Dissertation, München, 1912, also Ann. Phys. 49, p. 1, 1916.
- [11] P. P. Ewald, "Die Berechnung optischer und elektrostatischer Gitterpotentiale," Ann. Phys. 64, pp. 253–287, 1921.
- [12] K. E. Jordan, G. R. Richter, and P. Sheng, "An efficient numerical evaluation of the Green's function for the Helmholtz operator on periodic structures," J. Comp. Phys., vol. 63, pp. 222–235, 1986.
- [13] I. Stevanoviæ and J. R. Mosig, "Periodic Green's function for skewed 3-D lattices using the Ewald transformation," Microw. Opt. Tech. Lett., vol. 49, no. 6, pp. 1353-1357, Jun. 2007.

- [14] J. Su, X.-W. Xu, M. He, and K. Zhang, "Integral-equation analysis of frequency selective surfaces using Ewald transformation and lattice symmetry" Progress In Electromagnetics Research, vol. 121, pp. 249-269, 2011.
- [15] S. M. Rao, D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., vol. AP-30, no. 3, pp. 409-418, May 1982.
- [16] W. C. Chew, Waves and Fields in Inhomogeneous Media, IEEE Press, NY 1995.
- [17] W. C. Chew, J. L. Xiong, and M. A. Saville, "A matrix-friendly formulation of layered medium Green's function," IEEE Antennas Wireless Propag. Lett., vol. 5, pp. 490-494, 2006.
- [18] Y. P. Chen, W. C. Chew, and L. Jiang, "A new Green's function formulation for modeling homogeneous objects in layered medium," IEEE Trans. Antennas Propag., vol. 60, no. 10, pp. 4766-4776, Oct. 2012.
- [19] K. Konno, Q. Chen and R.J. Burkholder, "Fast Computation of Layered Media Green's Function via Recursive Taylor Expansion," IEEE Antennas and Wireless Propag. Lett., vol. 16, pp.1048-1051, 2017.
- [20] C. A. Balanis, Advanced Engineering Electromagnetics, 2nd ed., John Willey & Sons, pp. 967-979.
- [21] R. D. Graglia, "On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle," IEEE Trans. Antennas Propag., vol. 41, no. 10, pp. 1448-1455, Oct. 1993.
- [22] D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Trans. Antennas Propag., vol. 32, no. 3, pp. 276-281, March 1984.