[大学 ICT 推進協議会 2019 年度年次大会論文集より]

三次元可視化システムと可視化事例の紹介

齋藤 敦子¹⁾, 山下 毅¹⁾, 小野 敏¹⁾, 大泉 健治¹⁾, 江川 隆輔^{2),3)}, 滝沢 寛之^{2),3)}

1) 東北大学 情報部情報基盤課
2) 東北大学 サイバーサイエンスセンター
3) 東北大学 情報科学研究科

a-saito@cc.tohoku.ac.jp

Introduction of 3D visualization system and visualization examples

Atsuko Saito¹⁾, Takeshi Yamashita¹⁾, Satoshi Ono¹⁾, Kenji Oizumi¹⁾, Ryusuke Egawa^{2),3)}, Hiroyuki Takizawa^{2),3)}

Information Infrastructure Division of Information Department, Tohoku Univ.
Cyberscience Center, Tohoku Univ.
Graduate School of Information Sciences, Tohoku Univ.

概要

東北大学サイバーサイエンスセンターでは、大規模科学計算システムを利用して得られ た結果を可視化する環境として「三次元可視化システム」を提供している。また、利用者 支援活動の一環として、従来行っていた高速化支援に加え、本センターの技術職員による 可視化支援の取り組みも行っている。本稿では、三次元可視化システムの概要と可視化事 例を紹介する。

1 はじめに

東北大学サイバーサイエンスセンター(以下、 本センター)では、全国共同利用施設として先端 的大規模科学計算環境を提供するため、常に最新 鋭・高性能コンピュータシステムを導入し、先端 分野の研究を強力に支援している。2015年2月か ら主力計算機としてベクトル型スーパーコンピュ ータシステムSX-ACE、2014年4月からスカラ型 並列コンピュータシステムLX 406Re-2、そして、 これらの大規模科学計算システムを利用して得ら れたシミュレーション結果を可視化する環境とし て、三次元可視化システムを提供している。三次 元可視化システムの導入により、本センター内で 大規模科学計算からその結果の可視化までが可能 となり、より幅広いサービスの提供および利用者 支援を行うことができるようになった。

本稿では、三次元可視化システムの概要と、こ れまでに本センターで支援を行った可視化事例を 紹介する。

2 三次元可視化システムの概要

三次元可視化システムは、三次元立体視対応の

大画面ディスプレイと、演算結果の可視化処理お よびディスプレイへの描画を行う可視化サーバ 4 ノードで構成されている。大画面ディスプレイは フル HD (1,920×1,080 画素) 50 インチ LED モニ タを12面(縦3面×横4面)配置し、最大7,680 ×3,240 画素の高精細表示が可能である。可視化サ ーバは、各ノードにインテル Xeon プロセッサ E5-2670 を 2 基、DDR3L メモリを 64GB、グラフ ィックボード NVIDIA Quadro K5000 を1 基搭載し ている。可視化サーバから本センターの大規模科 学計算システムのファイルサーバに直接アクセス できるようになっており、本センターの計算機で 得られたデータを別環境にコピーすることなく三 次元可視化システムで利用することができる。な お、研究室等で計算したデータを持ち込んで利用 することも可能である。可視化ソフトウェアは Advanced Visual Systems 社の AVS/Express MPE を 採用しており、可視化コンテンツを大画面ディス プレイ全面に表示することができる。大画面ディ スプレイと連動した液晶シャッターメガネを通し て見ることで三次元立体視が可能となる。表示さ れた可視化コンテンツは、マウス操作で自由自在 に回転・拡大・移動することができ、高精細な大

図1 三次元可視化システム

3 AVS/Express による可視化コンテンツ 作成

可視化ソフトウェア AVS/Express を用いた可視 化コンテンツの作成方法について概要を述べる。 AVS/Express は、図 2 のように GUI 画面上で、モ ジュールと呼ばれる四角い箱の形をした様々な可 視化機能をつなぎあわせて可視化ネットワークを 作ることで、可視化コンテンツを作成する。利用 可能なモジュールはおよそ 1,000 個もあり、それ らを任意に組み合わせることで多様な可視化処理 を行うことができる。なお、スクリプトで可視化 処理を自動化し実行することも可能である。

入力データは、テキスト形式/バイナリ形式の どちらにも対応している。データ読込速度はバイ ナリ形式の方が速いため、大規模データの場合は バイナリ形式でデータを用意することを推奨して いる。また、大規模なデータは、読込だけでなく、 可視化処理(加工/描画/出力)にも非常に時間 がかかる。そこで、可視化処理では一般的にデー タの間引きを行う。AVS/Express にはデータを間引 くためのモジュールも備わっており、あらかじめ 間引いた入力データを用意しなくとも、 AVS/Express 上で可視化した画像を見ながらデー タの間引き度合いを調整することが可能である。 入力データが構造格子型、離散データ、非構造格 子型の場合は、データのフォーマット情報を記述 したヘッダファイル (AVS 共通書式) を介してデ ータを読み込む。よって、可視化用にフォーマッ トを整えた入力データを別に用意するのではなく、 シミュレーション結果をそのまま入力データとし

て読み込むことができる。ただしデータのフォー マットによっては整形が必要な場合もある。その 他、plot3D や STL など多数のフォーマットに対応 している。

出来上がった可視化コンテンツは、画像や動画 として保存して持ち出すことができる。汎用的な 画像・動画の形式での保存も可能だが、 AVS/Express 独自の 3D アニメーションファイル 「GFA 形式」での保存を推奨している。GFA 形式 のファイルは、AVS/Express をインストールしてい ないパソコンでも、サイバネットシステム株式会 社から提供されているフリービューワ「3D AVS Player」を用いて再生することができる。 AVS/Express 上で再生するのと同様に、三次元動画 として再生しながら自在に視点変更することがで き、プレゼンテーション等でも利用することがで きる。

図2 可視化ネットワークの例

4 可視化事例

本センターの技術職員が作成または作成支援 した可視化の事例を紹介する。作成した可視化コ ンテンツは、本センターの見学コースのひとつと して、センター来訪者にも公開している。スーパ ーコンピュータや並列コンピュータで得られたシ ミュレーション結果を分かりやすい形で伝えられ るため、センターの活動や利用者の研究内容を紹 介する広報としても役立っている。

4.1 フラーレンの爆発解離シミュレーション

東北大学大学院理学研究科 河野研究室 山崎 馨氏が研究された、X 線照射によりフラーレンが 爆発解離する様子のシミュレーション[1] を三次 元動画として可視化した(図 3)。出来上がった 可視化コンテンツのファイルサイズは 94MB

(GFA 形式)、201 フレームからなる。粒子の色 は、電荷の違いにより色づけした。作成した可視 化コンテンツを、河野先生、山崎氏に三次元立体 視で体感してもらったところ、奥行き情報の視覚 的な認知が可能となり、二次元画像よりも時間経 過による構造の変化を詳細に観測できるので、よ り深く理解することができる、構造の妥当性の直 観的な検証が可能になると期待される、との感想 が得られ、三次元立体視による有意性を感じても らうことができた。

図3 フラーレンの爆発解離シミュレーション

4.2 DNA 二重らせんの切断シミュレーション

東北大学大学院理学研究科 河野研究室 菱沼 直樹氏が研究された、放射線による DNA らせん構 造の切断シミュレーション[2] を、本センターの技 術職員の支援のもと、河野研究室で三次元動画と して作成した(図4)。三次元可視化システムによ り、紙面ではなかなかわかりにくい DNA のらせん 構造を立体的に確認することができた。

図4 DNA 二重らせんの切断シミュレーション

4.3 プラズマ熱流動場のシミュレーション

大阪大学接合科学研究所 茂田正哉先生が開発 された、プラズマ熱流動場のシミュレーション[3] を三次元動画として可視化した(図5)。プラズマ トーチ、RF 誘導コイル、トーチ内の温度変化、流 れ場を可視化した。出来上がった可視化コンテン ツのファイルサイズは 536MB (GFA 形式)、400 フレームからなる。入力データは267万点の格子 点を持つ大規模なデータであったため、可視化す るにあたり、バイナリ形式に変換およびデータの 間引きを行った。トーチ内の全体の色およびトー チ中心断面の色は、プラズマの温度変化を示して いる。流れ場は擬似的に流れに粒子を乗せて可視 化している。粒子の色は流速で色付けをした。三 次元立体視により、トーチ内部でらせん形状を描 いて複雑に動く流れ場の様子を直感的に確認する ことができた。

図5 プラズマ熱流動場のシミュレーション

4.4 航空機エンジン騒音の音圧伝搬シミュレー ション

金沢工業大学 佐々木大輔先生、東北大学大学 院工学研究科 福島裕馬氏が研究された、航空機 エンジン騒音の音圧伝搬シミュレーション[4] を 三次元動画として可視化した(図 6)。ある時刻 の音圧分布を様々な断面で三次元静止画にしたも のをまとめて動画にしており、出来上がった可視 化コンテンツのファイルサイズは 107MB (GFA 形式)、25フレームになった。赤い部分が最も音 圧の高い部分を示しており、エンジン回りやエン ジンに近い機体部分で圧力の高い分布になってい ることが可視化した画像から見て取れる。

図6 航空機エンジン騒音の音圧伝搬シミュレーション

4.5 津波浸水被害の再現シミュレーション

東北大学災害科学国際研究所 越村俊一先生が 研究された、東日本大震災での宮城県女川町の津 波浸水被害の再現シミュレーション[5]を三次元 動画として可視化した(図7)。500m×320mの 区域を33cmメッシュで分割して計算された大規 模なデータのため、データの間引きを行い可視化 した。出来上がった可視化コンテンツのファイル サイズは776MB(GFA形式)、1401フレームか らなる。津波の色は波高により色づけをしている。 町の地形や構造物は震災前の地形データと航空写 真から再現している。津波がどのように押し寄せ、 町を覆っていったのかが、可視化した動画から確 認することができた。

図7 津波浸水被害の再現シミュレーション

5 VR 技術の活用

三次元可視化システムをより手軽に体験する 方法として、近年急速に普及してきた VR (Virtual Reality)機器を活用する方法を検討している。VR 機器は比較的安価に入手可能であり、その有効活 用の可能性を探ることで三次元可視化システムの 将来計画に関する重要な知見が得られることが期 待できる。

まず、AVS/Express とスタンドアローン型 VR ゴーグル「Oculus Go」(図 8)を用いて、可視化 能力の検証を行った。Oculus Go は AVS/Express の 3D アニメーションファイル GFA 形式の再生に 対応していないため、汎用的な 360 度動画の形式 に変換することにした。360 度動画への変換は AVS/Express のライブラリを利用して比較的容易 に行うことができた。作成した 360 度動画を Oculus Go で再生してみたところ、三次元可視化 システムと同じような没入感を体験することがで きた。しかし、三次元可視化システムは立体視か つ6自由度(回転・拡大・移動が可能)であるの に対し、360度動画は平面視であり、また、Oculus Goは3自由度(装着者の顔の向きにのみ追従)で あることから、従来の三次元立体視を完全に再現 することはできなかった。今回の課題を踏まえ、 また別のアプローチで VR 技術の活用方法を探っ ていきたいと考えている。

図8 スタンドアローン型 VR ゴーグル「Oculus Go」

6 おわりに

本センターの三次元可視化システムおよび可 視化事例を紹介した。シミュレーション結果を理 解して科学技術の進展につなげるためには、研究 者による結果の正しい解釈とそれに基づく深い考 察が不可欠である。可視化はそのための有効な手 段であり、本センターでも重要なサービスのひと つと位置づけている。今回紹介した可視化事例か らも、シミュレーション結果をより正確に深く理 解するために三次元可視化が非常に有益であるこ とが確認できた。その一方で、可視化装置の維持 や管理には多大なコストを要する。今後は民生品 で安価に入手可能な機器の活用も視野に入れ、今 後のサービス提供のあり方を引き続き検討してい く予定である。

謝辞

本稿を執筆するにあたり、可視化データを提 供してくださった、東北大学大学院理学研究科 河野研究室 河野裕彦先生、山崎馨氏、菱沼直樹 氏、大阪大学接合科学研究所 茂田正哉先生、金 沢工業大学 佐々木大輔先生、東北大学大学院工 学研究科 福島裕馬氏、東北大学災害科学国際研 究所 越村俊一先生をはじめ、多くの方々にご協 力ご支援をいただきました。心より感謝申し上げ ます。

参考文献

- [1] 山崎馨,上田潔,河野裕彦,「X線自由電子レ ーザーパルスによるフラーレン超多価カチオ ン C60q+の爆発解離の動力学シミュレーショ ン」,SENAC Vol.48 No.3 (2015-7), pp.1-6, 2015
- [2] 及川啓太,菱沼直樹,菅野学,木野康志,秋山 公男,河野裕彦,短鎖モデルDNAの鎖切断過 程:化学反応動力学による解析,日本化学会 第96春季年会(2016),2016年3月24日,同志 社大学 京田辺キャンパス,京都,2016
- [3] 茂田正哉、「DC-RF ハイブリッド熱プラズマ 流の非定常 3 次元数値シミュレーション」、
 SENAC Vol.46 No.3 (2013-7), pp.13-17, 2013
- [4] 福島裕馬,大林茂,佐々木大輔,中橋和博, 「Building-Cube Method を用いたエンジンナ セルインレットからの騒音伝播解析」, SENAC Vol.47 No.1 (2014-1), pp.35-45, 2014
- [5] S. Koshimura et al., [The impact of the 2011 Tohoku earthquake tsunami disaster and implications to the reconstruction], Soils and Foundations 54 (2014), pp.560-572, 2014