東北大学自営光ファイバーの経年劣化調査

七尾 晶士1), 森 倫子1), 千葉 実1), 水木 敬明2), 曽根 秀昭2)

1) 東北大学 情報部情報基盤課

2) 東北大学 サイバーサイエンスセンター

nanao@tohoku.ac.jp

Aging Investigation on Optical Fibers Owned by Tohoku University

Masashi Nanao¹⁾, Noriko Mori¹⁾, Minoru Chiba¹⁾, Takaaki Mizuki²⁾, Hideaki Sone²⁾

Information Infrastructure Division, Information Department, Tohoku University.
 Cyberscience Center, Tohoku University.

概要

東北大学では、各キャンパス間、並びに建物間において自営の光ファイバーを敷 設しネットワークを構成している。本稿では、敷設から20年が経過し途中東日本 大震災をも経験した光ファイバーの劣化状況の調査を行ったので、その結果につい て報告する。

1 はじめに

東北大学では、キャンパスネットワーク TAINS (Tohoku Academic/All-around/Advanced/ Information Network System)の運用を 1988 年 から開始しているが、現在使用している光フ ァイバーは 1995 年にスタートした第2世代キ ャンパスネットワーク SuperTAINS (TAINS95) 以降に敷設した物である。その後、第3世代 TAINS/G (2003 年)、第4世代 StarTAINS (2009 年)、そしてその更新 (2016 年)と、基幹ネ ットワーク機器の更新を行っており、その間、 ネットワークの構成の変化や建物の新築・移 転に合わせ順次光ファイバーも拡張と増強を 行ってきた。今回、敷設より 21 年経過した光 ファイバーが通信品質にどの程度影響を与え ているかを調査したので、本稿で報告する。

2 光ファイバーの構成

東北大学は大きく分けて、5 つのキャンパ ス(片平地区、川内地区、青葉山北地区、青葉 山南地区、星陵地区)から構成されており、そ れぞれのキャンパスを接続するように自営の 光ファイバーが敷設されている。キャンパス 間光ファイバーは、1995 年当初、シングルモ ード光ファイバー(SM)の 40 芯を敷設し、それ ぞれのキャンパスに 10 芯ずつ割り当てを行 ない直接接続可能な構成[1]となっていたが、 現在は改修や拡充を経て、次のような構成(図 1) となっている。

- ・青葉山北・青葉山南間
 40SM 1995 年敷設
 - 128SM 2009 年敷設
- ・青葉山北・川内間
 40/60SM 1995 年、2002 年敷設混在
 120SM 2009 年敷設
- ・青葉山南・川内間
 40/60SM 1995 年、2002 年敷設混在
 ・片平・川内間
- 40/80SM 1995年、2009年敷設混在
- ・星陵・川内間
 40/80SM 1995年、2009年敷設混在

図1 光ファイバーの構成図

3 調査方法

今回の調査にはOTDR、B-OTDR、概観評 価の3種類の手法を用いた。それぞれの検査 の方法と結果につて説明する。

3.1 OTDR (光パルス試験器) による検査

OTDR(Optical Time Domain Reflectometer) は、一方の光ファイバー端から計測用の光パ ルスを入射することにより、光ファイバーの 長さ方向の損失状態を測定し異常を検知する ことができる。したがって、この測定により 融着接続やコネクタ接続などの接続損失の影 響を調べることができる。

写真1 OTDR(光パルス試験器)

3.2 B-OTDR (歪分布測定器) による検査

B-OTDR(Brilllouin Optical Time domain Reflectometer)は、一方の光ファイバー端から 計測用のパルス光を入射することにより、フ ァイバーに生じている長手方向の歪みや温度 変化を高精度に測定することができる。した がって、この測定により光ファイバーへの物 理的な曲げ応力や荷重負荷による圧縮などの 影響を調べることができる。

写真 2 B-OTDR (歪分布測定器)

3.3 撤去ケーブルの芯線状態の概観評価

同時期に敷設し先に撤去された一部のファ イバーに対して、デジタルマイクロスコープ を使用してその芯線の目視検査を行う。この 検査では外的要因による劣化具合を調査する。

4 調査結果

4.1 OTDR (光パルス試験器)結果

4.1.1 キャンパス間光ファイバー(川内~片 平)

川内キャンパスと片平キャンパス間の光ケ ーブルの芯線の内、#35 と#36 を調べた結果、 図 2 に示す通り伝送損失がほぼ新品状態の光 ファイバーの典型値に一致する結果が得られ た。このことから、芯線の劣化はないものと 推定できる。

4.1.2 キャンパス間ファイバー(川内~星陵)

川内キャンパスと星陵キャンパス間の光ケ ーブルの芯線の内、#27 と#28 を調べた結果、 共に川内側から 1km のところで、比較的大き な損失(図3)が発生しているが、これは 1995 年に敷設した光ファイバーと 2009 年に敷設 した光ファイバーの相互の接続点による損失 と思われる。また図4 で示す通り#28 の芯線 は伝送損失がほぼ新品状態の光ファイバーの 典型値に一致する結果が得られており、距離 あたりの伝送損失はほぼ典型値に一致する結 果が得られたことから、芯線の劣化はないも のと推定できる。

4.2 B-OTDR (歪分布測定器) 結果

川内~星陵間の#27、#28 のいずれも川内か ら 2.8km 付近に歪を確認した(図 5,図 6)。こ の歪は曲げ等の影響ではなく、製造時期の異 なる芯線同士を接続していることから生じた ブリルアン周波数シフトの変化によって生じ たものであり、芯線自体は問題ないと思われ る。

4.3 撤去ケーブルの芯線状態の概観評価結果

1995 年に敷設し、その後拡充のため 2002 年に新しい光ファイバーと交換のため撤去さ れたケーブルを使用して調査を行った。デジ タルマイクロスコープでの観察結果では、い ずれのテープ芯線も接着部に気泡が見つかっ た(写真3)。この気泡は接着剤部分にのみに 見られることからテープ芯線接着時に混入 (発生)したものと推測され、気泡自体は光 ファイバーの被覆の外側に存在しているので 問題ないと思われる。

また、図 2,4 に示した伝送損失は典型値に 近い値であり、長波長ほど損失が増加すると いうマイクロベンドロスの特徴は確認されな かった。したがって、この接着部の気泡は光 ファイバーの損失には影響を与えていないと 思われる。

写真3 芯線観察写真

5 おわりに

当初想定された光ファイバーの劣化は、測 定の結果ほとんど確認できなかった。また震 災による影響も受けていないことがわかった。 今後は、ファイバーの外装皮膜の強度試験や 浸水による浸潤など、多角的な劣化調査につ いても考えていきたい。

謝辞

本調査にあたり、技術的な調査協力、助言 をしてくださった東日本電信電話株式会社の 皆様に感謝申し上げます。 参考文献

[1] 亀山 幸義、千葉 実、"SuperTAINS の設 計から完成まで"、 TAINS ニュース 、No.3、 pp.4-10、1995.