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This paper presents flexible inner—outer Krylov subspace methods, which are implemented
using the fast multipole method (FMM) for solving scattering problems with mixed dielectric
and conducting object. The flexible Krylov subspace methods refer to a class of methods
that accept variable preconditioning. To obtain the maximum efficiency of the inner—outer
methods, it is desirable to compute the inner iterations with the least possible effort.
To this end, we construct a less—accurate but much cheaper version of the FMM by
intentionally setting the truncation number to a sufficiently low value, and then use it
for the computation of inaccurate matrix—vector multiplication in the inner solver. The
main focus of this study is to clarify the relationship between the overall efficiency of
the flexible inner—outer Krylov solver and the accuracy of the FMM within the inner solver.
Numerical experiments reveal that there exits an optimal accuracy level for the FMM within
the inner solver, and that a moderately accurate FMM operator serves as the optimal
preconditioner. The accomplishments presented in this paper would contribute to not only
the facilitation of the utilization of numerical methods for electromaghetic wave problems
but also the further development of the computer aided engineering (CAE) technology

1. Introduction

Amongst various numerical methods, the method of moments (MoM) is one of the most powerful
techniques for solving large—scale electromagnetic wave problems, and it is usually
implemented in conjunction with iterative linear system solvers. Recently, in the area of
scientific computations, Krylov subspace methods (KSM), which are used for iteratively
solving linear systems, have enjoyed widespread success and popularity in scientific
computing because of significant advantages such as low memory requirements and good
approximation properties

Since the fast multipole method (FMM) [1] does not explicitly generate the coefficient
matrix, it has been still a challenging problem to establish a strategy to design an
efficient preconditioner for iterative methods implemented with the FMM. In recent years,
novel iterative methods, which are classified as so—called flexible KSM, have been proposed
[2][3]. The flexible KSM refer to a class of methods which accept preconditioning that can
change from one step to the next. Malas [4] and Fan [5] have studied the flexible KSM in
the context of multipole techniques; the former takes into account only the near field
interaction for the preconditioner, whereas the latter includes also the far field
interaction expressed by the multipole expansion as well as the near field interaction for
further enhancement of the preconditioner. However, the flexible KSM have been less
extensively studied or practiced so far for the electromagnetic wave problems. In this paper,
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we propose an efficient implementation of the inner-outer flexible GMRES (FGMRES) in the
context of the multipole techniques. The main contribution of this paper is to clarify the
relation between overall efficiency of the inner—outer FGMRES and the accuracy of the inner
solver’ s matrix-vector multiplication (MATVEC).

2. Inner—Outer Flexible GMRES

The flexible Krylov subspace methods belong to a class of methods that allow variable
preconditioning; in other words, these methods accept preconditioning that can vary at each
iteration step. Assume that the system Ax=56 is solved, where A4 denotes the coefficient
matrix, b 1is the right hand side vector, and x represents the unknown vector. In the
conventional right—hand preconditioned algorithm, the right-hand preconditioning
operation z=K'v is calculated in each iteration, where z and v are vectors and K 1is
the preconditioning matrix. The preconditioner K must be a good approximation to 4, and
it should be relatively cheap to construct. Here, the operation z=K"'v can be considered
to be a method for approximately solving A4z=v. Hence, we can replace the computation
z=K"'v byroughly solving Az=v withan iterative solver toobtain z. Here, the iterative
solver for the original linear system is generally referred to as the “outer” solver,
and the iterative solver that performs the preconditioning is referred to as the “inner’
solver. This inner—outer concept implies that different values of K are obtained at each
step of the KSM; hence, the outer solver must be able to work with variable preconditioners.
This is facilitated by the use of flexible KSM. In addition, we also note that the particular
case where the flexible GMRES (FGMRES) is employed for the outer solver and the GMRES is
used for the inner solver is usually called “inner—outer flexible GMRES.”

To obtain maximum efficiency of the inner—outer methods, it is desirable to compute
the inner iterations with the least possible effort. Hence, in general, inaccurate MATVEC
is performed in the inner solver within a short computation time. This is realized by using
a particular feature of the multipole techniques. The accuracy and computational cost of
the FMM can be controlled by selecting the truncation number, which indicates the number
of multipoles used to express far—field interactions. On the basis of this fact, we construct
a less—accurate but much cheaper version of FMM by intentionally setting the truncation
number to a sufficiently lower value, and then use it for inaccurate MATVEC computation
in the inner solver. Accordingly, two FMM operators with different levels of accuracy are
used; the one is highly accurate and was used for the MATVEC within the outer solver, whereas
the other operator, which is less accurate and a cheaper version of FMM, is employed for
the computation of the MATVEC within the inner solver.

To control the accuracy and computational cost of the FMM operator, we introduce two
defines the truncation number for the lowest MLFMA level

parameters, L, and p. L

low low

within the inner solver. The parameter p defines the increasing rate of the truncation
number when the level increases from the lowest to the highest, and it indicates the overall
accuracy and computational cost. By using these two parameters, we can define the truncation
number for the FMM within the inner solver, L., as follows:

i

L, =c(ka)’, (D

where a denotes the cluster size of a level, and < 1is a constant that is pre—computed
that is, ¢ is set such that
L, for the lowest MLFMA level becomes equal to L, . We notice that for the determination

prior to the solver execution according to the value of L

low ?

of the two parameters L, and p, both parameters should be set such that all the truncation

low
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numbers for the inner iteration (L,) are less than those for the outer iteration. From
Eq. (1), it is inferred that p affects the overall accuracy and computational cost; as
p increases, the FMM within the inner solver becomes more accurate and increasingly more
expensive.

3. Numerical Experiments

In this section, some numerical results will be presented to verify the efficiency of
the inner—outer flexible GMRES with the proposed inner solver implemented in the multipole
context

We consider the following three geometries in the numerical experiments:

(a) Dielectric—coated conducting sphere,

(b) Dielectric—coated conducting NASA almond,
(c) Frequency selective surface (FSS) structure.

The first geometry (a) is a dielectric—coated conducting sphere. Since the analytical
solution (Mie series) is available for this test case, it provides a reference solution
for evaluating the accuracy of our software. The core of the conducting sphere has a radius
of 51, and the thickness of the dielectric layer, having a relative permittivity
&, =15-i0.5, is 0.25 1. The volume of the dielectric layer and the surface of the PEC sphere
are discretized into 338,074 tetrahedrons and 53,432 triangular patches, respectively,
leading to a total of 812, 114 unknowns. In this test case, the solver generates four MLFMA
levels with the truncation number for the outer solver’s FMM being {10,15,24,41}. Next, a
dielectric—coated NASA almond is considered as the second test case (b). The dimensions
of the PEC body are 32.021 x12.351 x4.204, and the dielectric layer has a thickness of
0.1, witharelative permittivity &, =1.5-i0.5. 93, 042 tetrahedrons and 38, 208 triangles
are generated for the volume and surface region, respectively, resulting in a total of
274, 463 unknowns. For this example, the MLFMA operator in the outer solver consists of five
levels, and {9,13,20,33,58} are used as the truncation numbers. The third test example (c)
deals with an FSS structure that is 104 x1041 x0.14, which is discretized into 60, 796
tetrahedrons and 206, 400 triangles, where the degrees of freedom for the resultant linear
system become 424, 504. The relative permittivity of the dielectric layer is ¢, =1.1. This
test case yields four levels MLEMA operator within the outer solver, with the truncation
number being {10,14,23,39}. All the truncation numbers are defined using the equation shown
in [7]. This last example is the most realistic and complicated problem and is the most
difficult to solve among the three geometries. In all of the cases, the scatterers are
illuminated by an x—polarized and -z-traveling incident plane wave.

For the aforementioned three test cases, we conduct comparative experiments with

respect to various sets of L, and p introduced in the previous section. In addition, for

low
comparison purpose, the strategies for the FMM operator within the inner solver employed
in Malas [4] and Fan [5] as well as non—preconditioned GMRES case will also be investigated.
Hereafter, we refer to the strategy proposed in [4] as “Malas’ strategy,” and that adopted
in [6] as “Fan’ s strategy.” The settings and conditions for the inner—outer flexible GMRES
for all the strategies are summarized in Table 1. The same settings are used for all the
three test cases. As shown in Table 1, we use two stopping criteria for both of the inner
and outer solver; one of the criteria is error-bound (tolerance) and the other is the maximum
number iterations. The settings for the Maras’ and Fan’ s strategies shown in Table 1 are

consistent with those in their original studies of [4] and [5]
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(a) Dielectric—coated conducting sphere

(b) Dielectric—coated conducting NASA almond

(c) FSS structure

Fig. 1 Geometry of three test examples.
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Table 1: Settings and conditions for inner—-outer flexible GMRES.

(a) Proposed strategy

Maximum number of iterations 20
Inner | Tolerance 0.1
GMRES | Definition of the truncation number Eq. (23)

Restart cycle 20

Maximum number of iterations 1000
Outer o or 1. 0E-4

n . OE-

FGMRES |——0e®

Restart cycle 40

(b) Malas’ strategy [4]

Maximum number of iterations 10
Inner Tolerance 0.1
GMRES | Definition of the truncation number Eq. (2) in [4]

Restart cycle 10

Maximum number of iterations 1000
Outer 1 T er 1. 0E-4

n . OE-

FGMRES  f—— ot cC

Restart cycle 45

(c) Fan's strategy [5]

Maximum number of iterations 7
Inner Tolerance 0.1
GMRES | Definition of the truncation number -

Restart cycle 7

Maximum number of iterations 1000
Outer

Tolerance 1. 0E-4
FGMRES

Restart cycle 47

(d) Non—preconditioned GMRES

Maximum number of iterations -
Inner Tolerance -
GMRES Definition of the truncation number -

Restart cycle -

Maximum number of iterations 2000
Outer

Tolerance 1. 0E-4
FGMRES

Restart cycle 100
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It should be pointed out that Malas’ strategy has a noticeable feature in that the
truncation number for FMM within the inner solver is equivalent to that for the FMM within
the outer solver, and Fan’ s strategy does not take into account the far-field interaction
expressed by the multipole expansion within the inner solver. It should be also noted that
the comparison among all the strategies is fair with regard to memory requirements. In fact,
for the same restart value, the storage requirements for FGMRES are twice that for the
standard GMRES, because FGMRES also stores the preconditioned vectors of the Krylov basis
as well as the original Krylov basis. Further, for the inner solver, we do not restart and
perform a prescribed number of full GMRES iterations. All the runs have been performed in
single precision on a parallel computer Expressb800 of Cyberscience Center, Tohoku
University, Japan.

Fig. 2 displays the bistatic RCS for the dielectric—coated conducting sphere of test
case (a), calculated by the inner—outer flexible GMRES and Mie series. It can be observed
that inner—outer flexible GMRES agrees quite well with the Mie series for both polarizations,
validating the accuracy of the solver code that we developed

Table 2 tabulates the iteration times and the CPU time required for the convergence for
the presented strategy with various sets of ;,and ,, along with Malas’ strategy [4],
Fan’ s strategy [5], and non—preconditioned GMRES (100), and Fig. 3 compares the convergence
history for the presented strategy with (7, , ,) = (6, 0.75), Malas’ strategy [4], Fan's
strategy [5], and non—preconditioned GMRES (100). From Table 2, it can be inferred that the
combination (z, , p) = (6, 0.75) perform quite well among all of the sets for all three
test cases. Especially, it is worth noticing that, in the test case (c), the proposed method
is the one that attains the solution, and all the other methods fail to converge. This
observation reveals that there is an optimal accuracy for the FMM within the inner solver,
and that a moderately accurate FMM operator is optimal. This implies that when the FMM within
the inner solver is deteriorated, the inner solver can no longer serve as the preconditioner,
and thus in both the cases, the total performance of the solver is not sufficiently improved.
Additionally, it should be noted that the proposed strategy was proven to be superior to
those of both Malas and Fan.

Table 3 lists the memory requirements for the presented strategy with (1, , ,) = (6, 0.75),
Malas’ strategy, Fan’s strategy, and non—preconditioned GMRES(100). Fan’s strategy needs no
extra memory storage as compared to non—preconditioned GMRES since it does not take into
account the far—-field interaction within the inner solver, thus, the memory requirements
for Fan's strategy are always equal to that for the non—preconditioned GMRES. Malas’
strategy has an advantage with regard to memory utilization as compared to the proposed
strategy. This is because the truncation number for FMM within the inner solver is equivalent
to that for the FMM within the outer solver; therefore, the ¢2# and [2p translators for
the outer solver can be reused for the inner solver. Consequently, Malas’ strategy does
not require extra memory storage for the ¢2/ and L2p translators for the inner solver.
However, the strategy does not sufficiently reduce the CPU time, as shown in Table 2. On
the other hand, the proposed strategy requires a slightly larger amount of memory storage
compared to other methods; however, the impact is not very significant as compared to the
basic requirements for the FMM operator within the outer solver. From the observations
provided, we can state that the proposed strategy with (7, , ,) = (6, 0.75) achieves the
optimal performance with regard to the balance between the memory requirements and
convergence behavior.
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Fig. 2 Bistatic RCS of a dielectric—coated conducting sphere for V-V and H-H polarizations

computed by inner—-outer flexible GMRES and Mie series.
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Table 2: Comparison of CPU time for presented strategy with various sets of , ~and p,

along with Malas’ strategy [4], Fan's strategy [5], and non—preconditioned GMRES (100) ;
Acronyms: N.C. = “not converged.”

(a) Dielectric—coated conducting sphere

L. p L Tteration times CPU time
[s]

0.5 3, 4, 6, 8 200 260118';

3 0.85 3, b, 9, 17 76 94765. 04
1.0 3, 6, 12, 24 72 61750. 63

0. 25 6, 7, 8, 10 115 140056'3

6 0. 55 6, 8, 12, 18 43 49121. 40
0.75 6, 10, 16, 28 40 45445. 70

0.1 10, 10, 11, 12 N. C. N. C.

10 0.4 10, 13, 17, 22 39 51128. 32
0. 58 10, 14, 22, 33 39 54802. 14

Malas’ [4] 10, 11, 12, 16 78 63192. 40
Fan’s [5] 0, 0, 0, 0 716 300452';
Non—preconditioned GMRES (100) 1922 98959. 89

(b) Dielectric—coated NASA almond
Ligy, , , CPU  time
4 L Iteration times
[s]

0.5 3, 4, 6, 8, 12 123 25499. 16
3 0.85 3, 5, 9, 17, 31 52 8840. 75
1.0 3, 6, 12, 24, 48 48 8567. 96
0.25 6, 7, 8, 10, 12 116 21706. 89
6 0. 55 6, 8, 12, 18, 27 29 6416. 50
0.75 6, 10, 16, 28, 48 27 4499. 97

0.1 9, 9, 10, 11, 11 N. C. N. C.
9 0.4 9, 11, 15, 20, 27 29 6892. 78
0.58 9, 13, 20, 30, 44 27 9103. 85
Malas’ [4] 9, 9, 11, 13, 18 68 9927. 53
Fan’s [5] 0, 0, 0, 0 N. C. N. C.
Non—preconditioned GMRES (100) 1056 17420. 14
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(c) FSS structure

. . CPU time
L. p L Iteration times [s]
S

0.5 3, 4, 6, 8 N. C. N. C.
3 0. 85 3, 5, 9, 17 N. C. N. C.
3, 6, 12, 24 206705. 4

1.0 225
4
0. 25 6, 7, 8, 10 N. C. N. C.
6, 8, 12, 18 113951. 0

§) 0. 55 149
2
0.75 6, 10, 16, 28 108 91884. 92
0.1 10, 10, 11, 12 N. C. N. C.
10 0.4 10, 13, 17, 22 110 94949. 39
0. 58 10, 14, 22, 33 107 99498. 96
Malas' [4] 10, 11, 12, 15 N. C. N. C.
Fan's [5] 0, 0, 0, O N. C. N. C.
Non—preconditioned GMRES (100) N. C. N. C.
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Table 3: Comparison of the memory requirements for presented strategy with (1, , ,) =

(6, 0.75), Malas’ strategy, Fan’s strategy, and non—preconditioned GMRES (100).
(a) Dielectric—coated conducting sphere

Memory usage

[GByte]

Proposed strategy with (r,, ,) = (6, 0.75) 46. 7
Malas’ strategy [4] 44.8

Fan’s strategy [5] 44.7
Non—preconditioned GMRES (220) 44. 7

(b) Dielectric—coated NASA almond

Memory usage

[GByte]

Proposed strategy with (g, , ,) = (6, 0.75) 9.09
Malas’ strategy [4] 8.22

Fan’ s strategy [5] 8. 12
Non—preconditioned GMRES (220) 8.12

(c) FSS structure

Memory usage

[GByte]

Proposed strategy with (g, , ,) = (6, 0.75) 25.2
Malas’ strategy [4] 24.0

Fan’ s strategy [5] 23.9

Non—preconditioned GMRES (220) 23.9
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4. Conclusions

In this paper, we have reported the performance of the inner—outer flexible GMRES,
implemented in the context of FMM techniques. Specifically, we have investigated the
relationship between the overall performance of the inner—outer flexible GMRES and the
accuracy of the MVM within the inner solver. We introduced two parameters for controlling
the accuracy and computational cost of the inner FMM operator with the solver. In the
numerical experiments, we employed the volume—surface integral equation for solving
scattering problems with mixed dielectric and conducting objects. These numerical
experiments revealed that there is an optimal accuracy for the FMM within the inner solver,
and that a moderately accurate FMM operator serves as an optimal preconditioner. By using
the preconditioner with the optimal accuracy, even though we require a slightly larger
amount of memory storage compared to conventional methods, the proposed method
significantly enhanced the convergence behavior.
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