<table>
<thead>
<tr>
<th>階</th>
<th>係・室名</th>
<th>電話番号(内線)</th>
<th>e-mail</th>
<th>主なサービス内容</th>
<th>サービス時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>一階</td>
<td>共同利用支援係 (受付)</td>
<td>022-795-3406 (3408)</td>
<td>uketuke@isc.tohoku.ac.jp</td>
<td>各種申請書、講習会、利用相談、広報、センターへの質問や要望の受付等</td>
<td>8:30〜17:15</td>
</tr>
<tr>
<td></td>
<td>利用相談室</td>
<td>022-795-6153 (6153)</td>
<td>sodan05@isc.tohoku.ac.jp</td>
<td>計算機利用全般に関する相談</td>
<td>10:00〜16:00</td>
</tr>
<tr>
<td></td>
<td>利用者読話室</td>
<td>(3444)</td>
<td></td>
<td>各センター広報の閲覧</td>
<td>8:30〜21:00</td>
</tr>
<tr>
<td></td>
<td>展示室 (分散コンピュータ博物館)</td>
<td></td>
<td></td>
<td>歴史の大型計算機等の展示</td>
<td>9:00〜17:00</td>
</tr>
<tr>
<td>三階</td>
<td>帰務係</td>
<td>022-795-3407 (3407)</td>
<td>syomu@isc.tohoku.ac.jp</td>
<td>帰務に関すること</td>
<td>8:30〜17:15</td>
</tr>
<tr>
<td></td>
<td>会計係</td>
<td>022-795-3406 (3405)</td>
<td>kaikei@isc.tohoku.ac.jp</td>
<td>会計に関すること、負担金の請求に関すること</td>
<td>8:30〜17:15</td>
</tr>
<tr>
<td></td>
<td>共同研究支援係</td>
<td>022-795-6252 (6252)</td>
<td>rs-sec@isc.tohoku.ac.jp</td>
<td>共同研究、計算機システムに関すること</td>
<td>8:30〜17:15</td>
</tr>
<tr>
<td></td>
<td>共同利用支援係</td>
<td>022-795-6251 (6251)</td>
<td>uketuke@isc.tohoku.ac.jp</td>
<td>ライブラリ、アプリケーションに関すること</td>
<td>8:30〜17:15</td>
</tr>
<tr>
<td></td>
<td>ネットワーク係</td>
<td>022-795-6253 (6253)</td>
<td>net-sec@isc.tohoku.ac.jp</td>
<td>ネットワークに関すること</td>
<td>8:30〜17:15</td>
</tr>
<tr>
<td>四階</td>
<td>研究開発部</td>
<td>022-795-6095 (6095)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>五階</td>
<td>端末機室</td>
<td>(3445)</td>
<td></td>
<td>PC端末機(X端末)</td>
<td>8:30〜21:00</td>
</tr>
</tbody>
</table>

（ ）内は東北大学内のみの内線電話番号です。青森県・川内地区以外からは090を加えます。

本誌の名前「SENAC」の由来

昭和33年に東北地区の最初の電子計算機として、東北大学電気通信研究所において完成されたパラメトリック型計算機の名前でSENAC-1(SENdai Automatic Computer-1)からと定名された。
CG-FMM による板状導体の電磁界解析

陳 犀、今野 佳祐、澤谷 邦男
東北大学大学院 工学研究科 電気・通信工学専攻

1 まえがき

モーメント法 (Method of Moments: MoM) は、電磁界の数値解析手法としてよく用いられる。モーメント法は、アンテナと散乱体の導体表面上で成り立つ電磁界の境界条件から得られる積分方程式を行列方程式に変換し、さらに行列方程式を解くことにより導体表面を流れる散乱電流を求める手法である [1]。行列方程式の解き方として、ガウス消去法や掃き出し法などの直接法がある。しかし、$N \times N$ の行列方程式を直接法を用いて解くと、計算時間とメモリがそれぞれ N^3 と N^2 に比例して急速に増加するようになる。そのため、電的に大きなアンテナ、散乱体などを含む大規模な電磁界の数値解析にモーメント法を適用する場合は、膨大なコンピュータ計算時間とメモリが必要となる。

この問題を克服する手法として、行列方程式の解法に CG(Conjugate Gradient) 法を用い、CG 法における行列ベクトル積の計算に FMM(Fast Multipole Method; 高速多重極法) を用いる CG-FMM が提案された [2]-[3]。また、CG-FMM に分割統治法の考え方を応用して多層化した MLFMA(Multi-Level Fast Multipole Algorithm) は、大規模問題の解析に用いられている [4]。

私どもの研究グループは、2010 年度にサイバーシエンスセンターとの共同研究で宇宙太陽発電システム用大規模アレーマンテナの数値解析に関する研究を行っている。これまでの研究では、アレーマンテナの周期構造を考慮した CG-FMM を提案し、1万素子規模の大規模線状アレーマンテナの数値解析を実現した [5]。しかしながら、実際のアテナは、単純な線状構造ではなく、板状導体を含むベッチアンテナの構造が用いられる。板状導体上の電流は 2 次元的に分布するため、電流分布を表すモーメント法の展開関数の数（未知数の数）も 2 次元的に配慮する必要がある。そのため、面状散乱体のモーメント法解析は、線状導体の解析より未知数の数が多く、更なる大規模の数値解析が必要になる。本報告では、CG-FMM を用いて板状導体のマイグリッドモデルの平面波散乱問題を解析し、CG-FMM の計算パラメータと計算時間及び計算機メモリの関係を検討したので報告する。

2 CG-FMM の手順

2.1 CG 法

モーメント法によって得られた行列方程式を $\mathbf{V} = \mathbf{ZI}$ とする。ここで、\mathbf{V} は既知の入射電圧ベクトル、\mathbf{Z} は既知の $N \times N$ インピーダンス行列、\mathbf{I} は未知の散乱電流ベクトルである。行列方程式に対する CG 法のアルゴリズムの概要は以下の通りである。

1. 電流ベクトル \mathbf{I} の初期値を \mathbf{i}_0 として、残差ベクトル \mathbf{r} 及び解の修正ベクトル \mathbf{p} の初期値 \mathbf{r}_0 及び \mathbf{p}_0 をそれぞれ以下のようにして求める。
\[r_0 = V - ZI_0 \]
\[p_0 = Z^t r_0 \]
(1)
(2)

2. 残差ベクトルの大きさ \(|r_i|\) が十分小さくなるまで反復処理

\[\alpha_i = -\frac{\langle Zp_i, r_{i-1} \rangle}{\|Zp_i\|^2} = \frac{\|Z^t r_{i-1}\|^2}{\|Zp_i\|^2} \]
(3)

\[I_i = I_{i-1} + \alpha_i p_i \]
(4)

\[r_i = ZI_i - V = r_{i-1} + \alpha_i Zp_i \]
(5)

\[\beta_i = \frac{\|Z^t r_i\|^2}{\|Z^t r_{i-1}\|^2} \]
(6)

\[p_{i+1} = -Z^t r_i + \beta_i p_i \]
(7)

を行う。ここで、\(\alpha_i \) と \(\beta_i \) はそれぞれ \(I_{i-1} \) と \(p_{i-1} \) の修正係数であり、\(Z^t \) は \(Z \) の共役転置行列である。また、\(\epsilon \) は解の誤差調整パラメータであり、\(\epsilon = 10^{-4} \) すれば \(N \) が数千から数万程度までは十分な精度の解が得られることが分かっている。

上述のアルゴリズムでは、反復処理1回当たり2回の行列-ベクトル積が行われ、その計算時間は \(O(N^2) \) である。また、\(Z \) を保存するための計算機メモリも \(O(N^2) \) となる。しかしながら、以下のFMMを利用すると行列-ベクトル積の計算時間及び必要な計算機メモリをどれも最大で \(O(N^{1.5}) \) まで減らすことができる。

2.2 FMM

図1に示すように、FMMではグリーン関数の加法定理 [2], [6] を利用して、CG法の行列-ベクトル積のうち遠方にあるセグメントとの間の相互インピーダンス行列と電流ベクトル \(I \) との積をグループ単位でまとめて計算する。まとめるときの計算時間及び必要な計算機メモリは、多重極数 \(L \) とグループ数 \(M \)、及びグループ中のセグメント数 \(K \) によって
決まることが分かっている。多重極数 L はグループの直径の最大値 D_{max} に比例する値として,

$$L = k_0 D_{\text{max}} + \alpha_L \ln (k_0 D_{\text{max}} + \pi)$$

で与えられる経験式が得られている。ここで, α_L は誤差調整パラメータであり, 通常 0〜10 の値が用いられ, $\alpha_L = 2$ すれば散乱パターンや電流分布は十分な精度で求められることが分かっている。解析モデルが 2 次元的な広がりを持つ場合（板状アンテナ、板状散乱体など）、多重極数 L と各グループに含まれるセグメント数 $K (= N/M)$ との関係は $L^2 \propto K$ となることが知られている。この場合、解析に要する計算時間と計算機メモリは総セグメント数 N とグループ数 M のみを用いて

$$\text{CPU time, computer memory} = O(MN + N^2/M)$$

で表される。(9) 式においてグループ数 M を $M = \sqrt{N}$ とすると計算時間及び計算機メモリが最小の $O(N^{1.5})$ となる。しかしながら、解析モデルの形状やセグメントの分布の仕方によっては $M = \sqrt{N}$ という最適なグループ分けができない場合もある。また、プログラム中で解析モデルやグループ配置の周期性を利用した場合、計算時間や計算機メモリが最小になるグループ数 M が $M = \sqrt{N}$ と異なる場合もあり得る。従って、グループ数に対する計算時間及び計算機メモリの変化を確かめるため、グループ数 M を変化させたときの計算時間とメモリについて検討した。

3 CG-FMM による板状導体の解析

CG-FMM を用いて、図 2 に示す板状導体のワイヤグリッドモデルの平面波入射問題を解析した。解析の各パラメータは表 1 に示す。板状導体の寸法と線状セグメントへの分割及び総セグメント数 N を固定し、グループ数の違いが計算時間及び計算機メモリに及ぼす影響を検討した。また、多重極数 L を決定するパラメータ α_L 及び反復回数を決定するパラ
メータεも固定した。散乱パターンの解析結果の一例を図3に示す。Gauss-Jordan法やCG法によって行列方程式を解いて得られた電流分布から求めた散乱パターンと、CG-FMMによって得られた電流分布から求めた散乱パターンはよく一致した。

図2: 板状導体による平面波入射の散乱

表1: 解析諸元

<table>
<thead>
<tr>
<th>項目</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of total segments N</td>
<td>4879</td>
</tr>
<tr>
<td>Number of cubes (Mx, My, Mz)</td>
<td>Mx = My = 2 ～ 17</td>
</tr>
<tr>
<td></td>
<td>Mz = 1</td>
</tr>
<tr>
<td>Number of total groups M</td>
<td>4 ～ 289</td>
</tr>
<tr>
<td>Max. number of segments in groups Kmax</td>
<td>1281 ～ 27</td>
</tr>
<tr>
<td>Size of planar conductor dx × dy</td>
<td>4λ × 4λ</td>
</tr>
<tr>
<td>Radius of dipole segment a</td>
<td>0.00025λ</td>
</tr>
<tr>
<td>Incident angle of plane wave (θinc, φinc)</td>
<td>(30°, 45°)</td>
</tr>
<tr>
<td>Error control parameter for FMM αl</td>
<td>2</td>
</tr>
<tr>
<td>Error control parameter to stop iteration ε</td>
<td>10^{-4}</td>
</tr>
</tbody>
</table>

次に、CG法及びCG-FMMにおける反復1回当たりの計算時間及び反復回数を図4に示す。なお、比較のためCG法で板状導体を解析するのに要した反復1回当たりの計算時間及び反復回数を図中に示している。CG法にはグループ分けの概念がないため、図中にはどちらの値もグループ数に依らない一定値として示している。図4によると、反復1回当たりの計算時間は M = 50 ～ 200 の間で最小値に近い値を示している。理論的に最小値を示すと予想される M = \sqrt{N} 70 程度の場合だけでなく、その前後のグループ数ならばかなり小さい計算時間が実現できていることが分かる。従って、グループ数が M = \sqrt{N} からずれた場合でも、計算時間が大幅に悪化することはないと言える。また、CG-FMMの反
図 3: 板状導体の散乱パターン。

図 4: 反復 1 回当たりの計算時間及び必要な反復回数。

反復回数は CG 法の反復回数よりも常に大きな値を示し、グループ数 M の増加に伴って多少増加する傾向が見られた。Z 行列中のインピーダンスのうち、どのインピーダンスが厳密・あるいは近似的に計算されるか否かは、グループ数に対応して変化する。そして近似的に計算されたインピーダンスには誤差が含まれ、厳密に計算したインピーダンスと異なる値になる。従って、グループ数の変化は、若干ではあるか Z 行列の変化をもたらし、異なる Z 行列から CG 法によって解を得るために必要な反復回数は異なるため、M の増加に対して反復回数が変化したものと考えられる。

次に、CG-FMM の総計算時間を図 5 に示す。比較のために、Gauss-Jordan 法及び CG 法で板状導体を解析するのに要した時間を示している。図 5 から分かるように、M = \sqrt{N} = 70 前後のグループ数にした場合、総計算時間が最小値に近い値になった。また、グループ数 M が M = \sqrt{N} = 70 よりも極端に大きかったり小さかったりする場合は、計算時間が CG 法と比較してあまり削減されないこととも分かる。
最後に、計算機メモリを図6に示す。計算機メモリは、グループ数 M が $M = \sqrt{N} = 70$ 付近で必ずしも最小にならず、$M = 200$ 前後で最小値に近い値となっている。その原因として、グループ配置の周期性をプログラム中で利用したことと、各グループに含まれるセグメント数が一定でないことの2つが考えられる。グループ配置の周期性をプログラムで利用すると、計算機メモリは式(9)と異なり、

$$
\text{CPU time, computer memory} = O(N + N^2/M)
$$

(10)

で表されることが分かっている。(10)式は、グループ数 M を N に近づけるほど計算機メモリは $O(N)$ に近づくということを意味している。従って、この場合は $M = \sqrt{N}$ が計算機メモリの最小値を与えるグループ数ではないことが分かる。
また、各グループの情報を保存するための計算機メモリ領域はプログラムの都合上、最大のセグメント数を持つグループに合わせて確保している。従って、各グループに含まれるセグメント数に大きな差がある場合（1グループだけ極端に多数のセグメントを含む場合など）、計算では使用しない無駄な計算機メモリを確保してしまうことになる。ゆえに、各グループに含まれるセグメント数をなるべく均一にするようなグループ分けの方が効率が良いと考えられる。

4 むすび

本報告では、CG-FMMを利用して、線状導体で構成された板状散乱導体の平面波散乱の数値解析を行った。その結果、CG-FMMによる解析に要する反復1回当たりの計算時間及び総計算時間はグループ数 \(M = \sqrt{N} \) 付近で最小値に近い値を示し、グループ数が \(M = \sqrt{N} \) からずれた場合でもCG法より高速に解析ができることが分かった。また、必要な反復回数はグループ数に対して変化した。計算機メモリは、プログラム中でグループの配置に周期性を利用したため、\(M = \sqrt{N} \) ではなく \(M = N \) に近づいたときの最小値になることが分かった。加えて、各グループに含まれるセグメント数がばらつきがないようにすると、不要なメモリ領域を確保せずに済むことも分かった。これらの検討結果は、CG-FMMを用いて宇宙太陽発電システム用大規模アレーヤンテナのような大規模電磁界の数値解析を効率的に行うために、板状アンテナの解析モデルの作成に参考になると考えられる。

謝辞

本研究は、東北大学サイバーサイエンスセンターのスーパーコンピュータを利用することで実現することができた。また、研究にあたっては同センター関係各位に有益なご指導とご協力をいただいた。

参考文献

月.

有機/金属界面の第一原理シミュレーション

森川良忠
大阪大学大学院工学研究科

量子力学、電磁気学、統計力学、といった物理学の基本法則のみに基づく物質の電子状態計算手法である第一原理シミュレーションは近年大きく発展し、基礎物質科学の分野における様々な現象の解明に大きな役割を果たしてきた。さらに、現象の理解に基づいて物質の性質を予測し、新しい有用な物質を設計するための強力なツールとして被用立てる試みがなされ、コンピューテーショナル・マテリアル・デザイン（CMD）と呼ばれる新しい研究分野として、基礎物質科学のみならず、産業やエネルギー、環境分野等、幅広い分野に応用されるようとなっている。高精度な第一原理シミュレーション手法を複雑な物質に適用していくには、大規模なスーパーコンピュータに適したアルゴリズムやプログラム開発が必要不可欠である。本研究プロジェクトにおいては、第一原理シミュレーション手法を開発・改良しつつ、半導体デバイス分野やエネルギー・環境問題で重要となる界面現象の解明を進めている。本稿では特に有機デバイスで重要となる有機半導体/金属界面の問題について紹介する。

1．界面電子準位接続

有機分子を用いた電子デバイスは、有機発光素子のディスプレイへの応用をはじめ、有機トランジスタ、有機太陽電池等への応用が期待されている。このような電子デバイスの性能は有機分子と金属極との界面での電子状態によって大きく左右される。金属極から有機分子層へ電子や正孔のキャリアーを注入する際のバリアーは、金属のフェルミレベルと分子との最高被占軌道（HOMO）や最低空軌道（LUMO）が作るバンド幅との界面でのエネルギー差と考えられる。そこで、界面でのこれらのレベルの位置関係が重要となってくる。最も単純には金属の真空レベルと半導体の真空レベルが一致するように接合すると考える（第1図(a)参照）。このような接合状態では、キャリアー注入のバリアーは金属の仕事関数に比例して変化することになる。すなわち、電子注入壊壁 Φ_B^e、ホール注入壊壁 Φ_B^h はそれぞれ、

$$\Phi_B^e = \Phi_B^h - A,$$
$$\Phi_B^h = I - \Phi_B^h,$$

となる。これを Schottky-Mott ルールという。現実にはこのルールは成り立たず、多くの金属・有機界面で電気二重層が生成し、両者の真空レベルが \triangle だけずれていていることが報告によって報告され、その後多くの実験によって支持されている（第1図(b)参照）[1, 2]。

第1図 有機/金属界面の電子準位接続 (a) 真空準位一致 (b) 界面電気二重層が生じた場合
\[\Phi^0_n = \Phi_n - A + \Delta, \]
\[\Phi^0_m = I - \Phi_m - \Delta. \]

\(\Delta \)は1eV程度になる場合もあり、電荷注入障壁に対する\(\Delta \)の影響は大きい。この\(\Delta \)は有機分子と電極電極との組み合わせによって様々な値を取る。同じ分子に対しても電極電極が異なれば\(\Delta \)の値も一般には異なってくる。そのため、電極電極の仕事関数\(\Phi_m \)を変えることによって電荷注入障壁を制御することが、自在に行える訳ではなくてくる。無機半導体/電極界面の分野では、

電子注入障壁\(\Phi_m^0 \)を基板電極の仕事関数\(\Phi_m \)で微分した量は界面Sパラメータと呼ばれる。

\[S = \frac{d\Phi_m^0}{d\Phi_m} = 1 + \frac{d\Delta}{d\Phi_m}. \]

\(S = 0 \)の場合、すなわち、\(\frac{d\Delta}{d\Phi_m} = -1 \)の場合、電子注入障壁\(\Phi_m^0 \)は基板電極の仕事関数\(\Phi_m \)によらず一定になる。この場合はBardeen極限と呼ばれ、界面のバンドギャップ中に界面状態密度が生じフェルミレベルがピン止めされる。一方、\(S = 1 \)の場合、すなわち、\(\frac{d\Delta}{d\Phi_m} = 0 \)の場合、基板の仕事関数\(\Phi_r \)に応じてフェルミレベルはバンドギャップ中を動く。この場合はSchottky極限の振舞いに近い。分子と基板電極との相互作用が強く、フェルミレベル付近に大きな界面状態密度が生じる場合は\(S = 0 \)、すなわちBardeen極限的であると考えられる。例えば、C60と金属電極との界面では\(S = 0 \)に近くなることが報告されているが、C60の最低空軌道(LUMO)が金属電極の電子状態と混ざり、フェルミレベル付近に大きな状態密度を生じるためである。しかしながら、このような直感的な理解では一見、理解できない系もある。化学的に不活性なn-アルカンは金属電極との相互作用は小さく、典型的な物理吸着系であり、大きな最高被占軌道(HOMO)-LUMOバンドギャップを持ち、電極との界面でのフェルミレベル付近にはほとんどの状態密度が生じないと考えられが、実験的には\(S = 0.6 \)と報告されており、中間的な挙動をする。このように\(\Delta \)の基板電極依存性については良く理解されていない面があり、理論的に解明すべき課題である。\(\Delta \)の生成起源や大きさを支配する要因を明らかにすることは、界面電子準位接続を自在に制御し有機分子デバイスの性能を向上させるためには必要不可欠のことで考えられる。本研究では有機/金属界面における界面電気二重層の生成要因とその制御の可能性について研究を進めている[3-10]。

2. 方法

計算はすべて第一原理分子動力学プログラムSTATE (Simulation Tool for Atom TEchnology)を用いて行った[11]。密度汎関数法(DFT)における一様化密度変調近似(GGA)に基づく計算で、Perdew–Burke–Ernzerhof(PBE)の交換相関エネルギーを用いた。また、ウルトラソフト擬量子チャナル法と平面波基底を用いて、効率的、且つ、高精度な計算手法を用いている。基底関数の積分を決定する平面波基底のカットオフのエネルギーは、25 Ry (波動関数)、225 Ry (補強電荷)とし、有機/金属界面では、弱いプランク・ディル・ワールス相互作用が重要であるが、通常のGGAにはこの相互作用は記述できない。そのため、その補正を加えた計算を行っている[12、13]。

金属の表面を構成するために、約2 nmの真空領域をもつ周期的スラブモデルを用いた。第2図に、ペンタセン/Ag(111)の系のスラブモデルを示す。分子平面は、基板表面に対し平行である。また、吸着子の吸着サイトは、分子の中心の位置で示している。各吸着子の吸着サイトは、実験結果を基に選択した。
有機/金属界面の第一原理シミュレーション

本計算では、金属の清浄表面から炭素原子までの高さ（Z₀）および6（4）層のスラブの底3（1）層を固定し、それ以外の原子位置を最適化した。Z₀を吸着距離とし、吸着エネルギーを真空準位シフトに対する吸着距離依存性を調べた。吸着エネルギー（Eₜ）は、吸着前のエネルギーから孤立した吸着子と清浄表面のエネルギーの和を差し引いたものである。真空準位シフト（Δ）は、吸着前後の吸着による仕事関数変化から求めた。まず、仕事関数は、真空領域内の電子における静電ポテンシャルの平均値から系のフェルミ準位を差し引いて求める。次に、仕事関数変化（Δφ）は、吸着系の仕事関数から清浄表面の仕事関数を差し引いたものである。したがって、Δφは、各吸着子のAu(111)上での1分子層の表面密度になるように、Helmholtz方程式に基づき、第1表の表面単位体積で算出されたΔφの値を補正した。

π共役分子と金属表面の相互作用は、vdW相互作用が支配的であると予想される。vdW相互作用は、局所密度近似（LDA）やGGAでは取り扱うことができないことが知られている。

そこで、最近、M. Dion et al.によって提案されたvan der Waals波関数（vdW-DF）を用いて、エネルギーの補正を行った。vdW-DFは、二点の電子密度から非局所エネルギーを近似してvdW相互作用を算出している。vdW-DFの計算の基になる電子密度は、自己無能で計算されたGGAのものを用いた。

3. 有機/金属界面における界面電気二重層の起源

3.1 n-アルカン/金属界面

n-アルカンと金属との界面は有機・金属界面の典型例として基本的な系である。するか、触媒など応用上も重要な系としてこれまで研究がなされてきた。n-アルカンの金属表面への吸着エネルギーはおよそ10kcal/mol/CH₃で示され、アルカン分子と金属表面との相互作用は小形で、典型的な物理吸着状態であると考えられている。しかしながら、大きな界面電気二重層の形成が観測されており、かなり大きな相互作用があることが実験的に示唆されていた。また、上に述べたように、界面のパラメーターも約0.6であり、なぜ基板金属依存性が生じるか興味深い。

n-アルカンは電気双極子モーメントを持たず、また、金属表面と化学的な結合を作らないので、界面電気二重層が形成することは考えにくいが、n-アルカンがほぼ一層吸着することによって、構造中で約-0.5εV、基板中では-0.7εVのもものは観測されている。このような物理吸着系で界面電気二重層が生成する原因としては、1）金属表面でヘッドラップシャルによって電子が表面側側に吸着されるため分子が分極する効果、2）量子力学的相関作用により分子の波動関数と分子の波動関数が避け合う効果（バウリ反発）、の三つの効果が提案されている。これらの効果でいずれも負のΔを与える電気二重層が生成する。

1）の鏡像効果パラメータは従来のLDAやGGAでは記述できない相互作用であるが、2）のバウリ反発は波動関数の重なりから来るものであり、LDAやGGAで十分記述できる。一般にハニカルにn-アルカンが金属表面に吸着した物理吸着系では、波動関数の重なりがあり、2）の機構が界面電気二重層Δを生じる主要な要因であると考えられている。って、LDAやGGAでΔが十分精度よく再現できると考えられる。

そこで、n-アルカンが様々な基板金属に吸着した際に生じるΔの基板金属依存性について調べた。n-アルカン/Pt(111)表面系についてFirmentと
Somorjaiらによって吸着構造が詳しく調べられ、第2図（b）に示されるような構造をとると結論している。吸着サイトについては実験的にわからないため、第一原理電子状態計算により安定吸着サイトを求めた。従来は、アルカンの水素原子は表面の少し深くホロサイトに位置すると想像されていたが、オントップサイトに位置していることは興味深い。これは、希ガスの吸着サイトとも一致している。

第3図に様々な基板金属表面上のΔをZ_{0}の関数として示す。この図で重要なことは、各表面での曲線は互いに良く似ており、また必ずしも基板の仕事関数の順に並んでいるわけではないということである。つまり、アルカン分子の吸着位置が各基板ではほぼ同じと仮定すると、基板金属の仕事関数が大きいほど界面電気二重層も大きくなるという傾向は再現しない。これは、仕事関数の大きい金属基板では分子による電荷の押し戻し効果が大きくなくなっているという直感的な画像が成り立っていないことを示している。それでは、より大きなΔを持つ基板上では分子—表面間の距離はより近づいていることを強く示唆している。すなわち、基板金属の仕事関数と、分子吸着によるポテンシャルの変化（Δ）は直接的な相関はなく、基板金属の仕事関数が大きい程、分子—基板間の距離が小さくなる傾向があるために、Δも大きくなると考えられる。

3.2 ベンゼン/金属界面

この節では、π共役分子として、プロトタイプであるベンゼンを用いた。ベンゼン/貴金属の系の計算結果をもとに、GGAとvdW-DFによる計算の妥当性について議論する。第1表に、各金属表面におけるGGAとvdW-DFによるZ_{0}およびE_{ad}の計算結果、E_{ad}の実験結果をまとめた。

<table>
<thead>
<tr>
<th>表面</th>
<th>GGA</th>
<th>vdW-DF</th>
<th>Expt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(111)</td>
<td>0.37</td>
<td>-0.050</td>
<td>0.37</td>
</tr>
<tr>
<td>Ag(111)</td>
<td>0.37</td>
<td>-0.081</td>
<td>0.37</td>
</tr>
<tr>
<td>Au(111)</td>
<td>0.37</td>
<td>-0.068</td>
<td>0.37</td>
</tr>
</tbody>
</table>

各金属表面において、E_{ad}が極小値をとる距離である平衡距離（Z_{0}）は、すべて0.37 nmであることがある。GGAによるE_{ad}の絶対値は、実験値に比べると、1桁小さい。vdW-DFによるE_{ad}は、実験値とほぼ同じである。これらの結果から、分子—金属表面の相互作用は、vdW相互作用が支配的であり、vdW-DFによる計算が妥当であることが分かった。第4図に、ベンゼン/貴金属の系の仕事関数変化の吸着距離依存性の結果を示す。横の破線は、それぞれの金属表面上での仕事関数変化の実験値を表している。

各金属表面において、ΔEは単調に減少している。また、すべての金属表面におけるΔEの吸着距離依存性は、ほぼ同じである。各金属表面におけるZ_{0}でのΔEの絶対値は、実験値に比べ過小評価されている（第4図）。希ガスの吸着系において、平衡距離の計算値が過大評価され、仕事関数変化の計算値が実験値に比べ過小になる。このことから、計算されたΔEが実験値と乖離するのは、Z_{0}が過大評価されているためであると考えられる。

現在の計算手法では、vdW相互作用が支配的な系の吸着距離は過大評価されてしまう。しかし、
Lang や Morikawa らは、正しい吸着構造を用いれば、LDA や GGA によって、vdW 相互作用が支配的な系の電子状態や ΔΦ を再現できることを報告している。

したがって、計算から吸着距離を求めることではなく、ΔΦ の実験値を再現するような吸着距離を導出した。Cu(111), Ag(111), Au(111) 上で導出した吸着距離（Zc^{ded}) の値は、それぞれ 0.29 nm, 0.33 nm, 0.31 nm となった。異なる金属表面上での Zc^{ded} は、異なる値となった。これは、分子-金属表面間の相互作用の大きさに依存していることを表している。

3.2 ベンゼン/金属界面

この節では、p 形有機半導体として有望な材料の一つであるベンゼンを用いた。ベンゼン/Cu(111) の系において、吸着距離の実験値が報告されているので、前章で行った方法が妥当かを検証する。また、ベンゼン/貴金属の系において、導出した吸着距離での電子状態の解析を行なった。

第 5 図に、ベンゼン/貴金属の吸着系の仕事関数変化の吸着距離依存性を示す。横断線は、それぞれの金属表面上での仕事関数変化の実験値を表している。縦の点線は、Cu 上での吸着距離の実験値（Zc^{exp}(Cu)Ag, Au 上での計算された平衡距離（Zc^{eq}(Ag, Au), Cu 上での計算された平衡距離（Zc^{eq}(Cu) を表している。

第 4 図 ベンゼン吸着による界面電気二重層

第 5 図 ベンゼン吸着系の仕事関数変化
ペンタセン/Cu(111)の系において、Z*$^{\text{th}}$(Cu)での$\Delta \phi$の絶対値は、実験値に比べて過小評価されている。しかし、Z*$^{\text{th}}$(Cu)での$\Delta \phi$は、実験値とほぼ同じであることが分かる。この結果より、前章で行なった方法で吸着距離を導出できることを示した。

ペンタセン/Ag(111)、ペンタセン/Au(111)の系においても、Z*$^{\text{th}}$(Ag、Au)での仕事関数変化の絶対値は、実験値に比べて過小評価されている。Ag(111)、Au(111)上での吸着距離の実験値の報告がないため、前章と同様な方法で、吸着距離を導出した。Ag(111)、Au(111)上でのZ*$^{\text{th}}$の値は、それぞれ、0.34 nm、0.33 nmとなった。Cu(111)の上でのZ*$^{\text{th}}$の値が、Ag(111)、Au(111)上での値に比べて、非常に小さくなっている。このことから、Cu(111)上において、化学的相互作用が強いことが示唆される。

4. まとめ

有機デバイスの性能を大きく左右する、有機半導体/金属電極界面での電子準位接続は、界面での分子と金属との吸着構造によって大きく影響を受け、界面構造、特に分子と基板金属との距離が界面電気二重層を支配する主要な要因の一つであることが明らかとなった。さらに、有機半導体/金属界面は非常にフレキシブルであるため、電極金属の違いによる相互作用の微妙な違いによって、界面構造が大きく影響を受けることも明らかとなった。そのため、有機半導体/金属界面における界面電気二重層を精度よく予測するには、構造を精度よく予測する必要がある。有機分子と金属電極との相互作用は化学結合による相互作用のほか、弱い分散力、いわゆるファン・デル・ワールス(vdW)相互作用が支配的になる場合が多い。従来の密度汎関数法(DFT)における局所密度近似(LDA)や一般化密度勾配近似(GGA)では、長距離の電子相関に由来するvdW相互作用は精度よく記述できなかったが、最近のvdW補正を用いることにより、かなり精度の良い予測が可能になってきており、界面電子準位接続もかなり精度よく予測できることを本稿で示した。本研究によって、今後、大気原理電子状態計算を用いた計算機マテリアルデザイン手法により、より望ましい界面を自在にデザインする可能性が拓げた。

謝辞
本研究は、豊田健治氏（現パナソニック）、葉田幾太郎氏（現東北大学WPI-ATMR）、柳澤将氏（阪大）、Kyuho Lee氏（現ラトガース大）、関一彦氏（逝去）、石井久夫氏（現千葉大）各氏との共同研究による。この謝意を表する。さらに、本研究は、東北大学サイバーエンスセンターのスーパーコンピュータを利用することで実現することができた。また、研究にあたっては同センター関係各位に有益なご指導とご協力をいただいた。

参考文献
非線形構造解析プログラム MSC. Marc / Marc Mentat の紹介*

1 はじめに

MSC.Marc は有限要素法による非線形構造解析汎用プログラムです。世界中で広く利用され最も評価を受けているプログラムの一つで、その扱える解析は以下の通り非常に広範囲にわたっております。

線形／大変形／弾塑性／剛塑性／破壊／熱伝導／動的非線形／境界非線形／流体と固体の

MSC.Marc Mentat は、汎用構造解析プログラムMarc の会話型プリ／ポストプロセッサとして、有限要素モデルの作成および解析結果の表示が行えます。

Marc と Mentat の組合せによる解析の概略は、以下のようにになります。

プリ ←→ ソルバー ←→ ポスト

Marc Mentat → Marc → Marc Mentat

プリデータ → ポスト出力
.mud .dat .t16

プリでは、メッシュ作成、初期条件、境界条件、接触条件の設定、材料特性、形状特性の定義を、ソルバーでは荷重履歴、解析実行を、ポストでは解析結果の表示を行います。

2 Marc, Mentat の実行環境

Marc, Mentat の実行には、まず

(1) 東北大学情報サイバーサイエンスセンター 大規模計算システム利用者番号

(2) X Window System の表示できる環境

が最低限必要となります。Marc/Mentat は、並列コンピュータ(gen.isc.tohoku.ac.jp)でサービスをしております。また、本センターの Marc での使用最大メモリサイズは、128GB です。

表1: サービスホスト

<table>
<thead>
<tr>
<th>バージョン</th>
<th>ホスト名</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSC.Marc2008r1</td>
<td>gen.isc.tohoku.ac.jp</td>
</tr>
<tr>
<td>MSC.Marc Mentat2008r1</td>
<td>gen.isc.tohoku.ac.jp</td>
</tr>
</tbody>
</table>

3 Mentat でのモデル解析例

3.1 例題

穴あき正方形板（図 1）を引っ張る場合の線形弾性解析を行います。
一辺が500mmの正方形板の中央に、半径125mmの穴があいた厚さ2.5mmの板を6250kgfの力で引っ張りその応力分布を求めてみます。対象条件を考慮して1/4モデルを使用し、2次元要素でモデル化します。

板の材料特性は以下のとおりです。

ヤング率 = 21000 kgf/mm²

ポアソン比 = 0.3

図1:穴あき正方形板

3.2 Mentatの起動

Mentatの起動には、並列コンピュータに接続する際にX forwardingの設定を行う必要があります。無事起動できれば、図2のMentatウィンドウが表示されます。

```
yourhost$ ssh -X -Y [利用者番号]@gen.isc.tohoku.ac.jp
(gen ~)$ mentat
```
3.3 メインメニュー

メインメニューは、上から順に解析の手順と一致しています。

プリ
メッシュの作成
形状特性の定義
材料特性の定義

境界条件の設定

解析
解析の実行
ポスト
結果の表示

図2: 起動画面

図3: メインメニュー
3.4 メッシュの作成
まず外周(線分と円弧)を定義し、AUTO MESH 機能を用い自動で要素分割してみます。
説明文中の記号は以下のとおりです。
- [] は、そのボタンをマウス左クリックする。
- \(<R>\) は、キーボードの Enter または Return キーを押す。
- \(<ML><MR>\) は、それぞれマウスの左、右ボタンをクリックする。
- 数値は、ダイアログエリアにキーボードで入力する。

メインメニュー[MESH GENERATION]
[ADD](PTS)

125 0 0 <R> \(\rightarrow\) PTS1
250 0 0 <R> \(\rightarrow\) PTS2
250 250 0 <R> \(\rightarrow\) PTS3
0 250 0 <R> \(\rightarrow\) PTS4
0 125 0 <R> \(\rightarrow\) PTS5

スタティックメニュー[FILL]
画面全体に収まるサイズにします。

[CURVE TYPE] \(\rightarrow\) [POLY LINE]
ポイントを折れ線で結びます。

\(\rightarrow\) [RETURN]

[ADD](CRVS)

(PTS1)を <ML>
(PTS2)を <ML>
(PTS3)を <ML>
(PTS4)を <ML>
(PTS5)を <ML>

<MR>
これで設定ポイントは終わりです。

[CRVE TYPE] \(\rightarrow\) [CENTER/POINT/POINT]
円弧の部分を作成します。

\(\rightarrow\) [RETURN]

[ADD](CRVS)

0 0 0 <R>
125 0 0 <R>
0 125 0 <R>

[AUTOMESH] \(\rightarrow\) [2D PLANAR MESHING] 定義した領域に自動メッシュをかけます。

\(\rightarrow\) [QUADMESH](OVERLAY) \(\rightarrow\) ALL:[EXIST.]
3.5 形状特性の設定
平面要素として厚さを与えます。
メイニューメニュー【GEOMETRIC PROPERTIES】
[NEW] → [NAME]
 thickness <R>
[PLANAR]
 → [PLANE STRESS]
 → [THICKNESS]
 2.5 <R> → [OK]
[ADD](ELEMENT) → ALL:[EXIST.]
[ID GEOMETRIES]

3.6 材料特性の設定
ヤング率、ポアソン比を与えます。
メイニューメニュー【MATERIAL PROPERTIES】
[NEW] → [NAME]
 steel <R>
[ISOTROPIC] → [YOUNG’S MODULES]
 21000 <R>
 0.3 <R> → [OK]
[ADD](ELEMENT) → ALL:[EXIST.]
[ID MATERIALS]

図4:AUTOMESH をかけた結果
3.7 境界条件の設定

作成したメッシュに、対称条件と荷重条件を与えます。
メインメニュー[BOUNDARY CONDITIONS] → [MECHANICAL]

対称条件1
[NEW] → [NAME] 固有の名前を与えます。
 fix,x <R>
[FIXED DISPLACEMENT] → [ON](X DISPLACE)
 → [OK]
[ADD](NODES)
 → <ML> ドラッグで ND4,ND6,ND7,ND8,ND5 を囲んで指定
 → <MR> これを設定ポイントは終わりです。

対称条件2
[NEW] → [NAME] 固有の名前を与えます。
 fix,y <R>
[FIXED DISPLACEMENT] → [ON](Y DISPLACE)
 → [OK]
[ADD](NODES)
 → <ML> ドラッグで ND1,ND9,ND10,ND11,ND2 を囲んで指定。
 → <MR>

荷重条件
[NEW] → [NAME] 固有の名前を与えます。
 ed_load <R>
[EDGE LOAD] → [PRESSURE]
 → [OK]
[ADD](EDGES)
 → <ML> ドラッグで ND4,ND12,ND13,ND14,
 ND15,ND16,ND18,ND3 を囲んで指定。
 → <MR>
 → [RETURN]
[ID BONDARY CONDS] 設定を確認します。
図5:境界条件の設定

3.8 解析実行

Mentat から Marc での解析を実行します。

メインメニュー ［JOBS］
→ [MECHANICAL] 応力解析
 → [PLANE STRESS] (ANALYSIS DIMENSION) 平面応力
 → [JOB RESULTS] ポストファイルに出力する情報を設定。
 → [Equivalent Von Mises Stress] (SCALARS) ミーゼス応力を指定。
 → [OK]
→ [OK]

[RUN]
→ [SUBMIT](RUN JOB)

パッチリクエストとして解析を実行します。
(パッチリクエストは am (Marc 専用、CPU 時間無制限、最大メモリ 16GB)というキューに投入されま
す) パッチリクエストの状態確認は、並列コンピュータにログインし qstat コマンドで確認してください。
キャンセルは qdel コマンドで行ってください。詳しくは、「ホームページ」→「新並列コンピュータ」→
「並列コンピュータの利用ガイド」をご覧ください。[MONITOR]を押し、解析レポート観 EXIT
NUMBER が 3004 なら、正常終了です。その他の番号については、マニュアル(C 編 プログラム入
力 付録 A) を参照ください。
3.9 解析結果の表示

解析した結果を（応力分布）を表示させます。

メインメニュー [RESULTS]
[OPEN DEFAULT]
[NEXT INC]
[DEF & ORIG] 変形図と原形図の両方を表示します。
[SETTING] → [AUTOMATIC] → [RETURN] 変形量をオートにします。
[SCALAR] → [Equivalent Von Mises Stress] → [OK] ミーゼス相当応力を指定します。
[CONTOUR BANDS] コンターバンド処理をします。
4 Mentat の終了

5 run_marc コマンド

「3.8 解析実行」では、Mentatのメニュー上からの解析実行と手順を解説しましたが、コマンドによる解析も可能です。ここでは、その前章の「形状特性的設定」までモデル作成が終っているものとし、以降のコマンドによる解析手順を解説します。

5.1 入力データファイル作成
メインメニュー[JOBS]
→ [MECHANICAL] 応力解析
→ [PLANE STRESS][ANALYSIS DIMENSION] 平面応力
→ [JOB RESULTS] ポストファイルに出力する情報を設定。
→ [Equivalent Von Mises Stress][SCALARS] ミーゼス相当応力を指定。
→ [OK]
→ [OK]
（ここまでは、「3.8 解析実行」と同じです。）[RUN]
→ [WRITE INPUT] 入力データファイルを出力します。
→ [OK] 確認を求められるので、OKとします。

ここで作成した入力データファイル(model1_job1.dat)が、run_marc コマンドへの入力ファイルとなります。

5.2 解析実行
入力ファイルを作成しましたら、コマンドライン上でrun_marc コマンドを実行します。ここでは、入力データ model1_job1.dat ファイルを解析する例を示します。
model1_job1.dat を解析するコマンド例
(run_marc コマンドに入力ファイルを指定する際は拡張子.dat を省きます。)
$ run_marc -j id model1_job1 -v n

（バッチリクエストは am (Marc 専用、CPU 時間無制限、最大メモリ 16GB) というキーに投入されます）

MSC. Marc 2008

Program name : marc
Job ID : model1_job1
User subroutine name :
Restart file job ID :
Substructure file ID :
Post file job ID :
Defaults file ID :
View Factor file ID :
Save generated module: no
Number of tasks : 1
Number of threads : 1
Host file name :
Message passing type : 0
Run job in queue : am (ジョブクラス)
Run directory : /$homedir
Scratch directory : /$homedir
Auto Restart : 0
Contact Decoupling : 0
Queue priority :
Queue CPU limit :
Queue start time :

qsub -q am -o /dev/null -e model1_job1.batch.err_log -J model1_job1
Job 12345 is submitted to queue am.

5.3 run_marc のコマンドオプション

run_marc コマンドには、様々なオプションが用意されております。ここでは、よく利用しそうなものだけを載せておきます。その他については、マニュアル（C 編 プログラム入力 付録 B 表 B-2）を参照ください。

<table>
<thead>
<tr>
<th>キーワード</th>
<th>オプション</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>-jid(-j)</td>
<td>job_name</td>
<td>入力ファイル名 model1_job1.dat を指定</td>
</tr>
<tr>
<td>-cpu</td>
<td>sec</td>
<td>cpu 時間の制限</td>
</tr>
<tr>
<td>-ver(-v)</td>
<td>yes(デフォルト)</td>
<td>バッチリクエスト投与前に確認するバッチリクエストをすべてに投与</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>-user(-u)</td>
<td>user_name</td>
<td>ユーザースクリプト user_name.f を指定</td>
</tr>
<tr>
<td>-q</td>
<td>am2</td>
<td>16GB 以上のメモリを使用する(最大 128GB)</td>
</tr>
</tbody>
</table>

バッチリクエストの状態確認、キャンセルについては、「ホームページ」→「新並列コンピュータ」→「並列コンピュータの利用ガイド」をご覧ください。
5.4 出力ファイル

解析が終了すると、主に以下のようファイルが作成されます。解析結果(out ファイル)末尾のexit number が 3004 なら正常終了です。

model1_job1.out(解析結果)
model1_job1.log(解析ログ)
model1_job1.t16(ポストファイル)
model1_job1.sta(ステータスレポートファイル)
model1_job1.batch.err_log(エラーログ)

解析時の指定によって、この他にもファイルが作成されます。それらのファイルの概要は、マニュアル(C 編プログラム入力 付録 B 表 B-1)を参照ください。

終了番号(exit number)

解析結果ファイル(model1_job1.out)の末尾にある marc exit number により、正常に終了したかエラー終了か、エラー終了の場合はその原因がわかります。

終了番号の確認

tail コマンドで model1_job1.out の末尾を表示

```
[gem ~]$ tail model1_job1.out

******************************

check marc exit passed

******************************

[gem ~]$
```

表3:終了番号

<table>
<thead>
<tr>
<th>番号</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>3004</td>
<td>正常終了</td>
</tr>
<tr>
<td>13</td>
<td>入力データにデータエラーが検出された</td>
</tr>
<tr>
<td>2004</td>
<td>剛体変位が発生している。または、全体剛性マトリックスが非正定マトリックスになっている</td>
</tr>
<tr>
<td>3002</td>
<td>指定したリサイクル数で収束しない</td>
</tr>
</tbody>
</table>

5.5 解析結果の表示

ポスト処理手順は、「3.9 解析結果の表示」と同じです。事前にポストファイルを読み込む必要があります。

メインメニュー[RESULTS]

[OPEN] → [model1_job1.t16] → [OK] 目的のポストファイルを読み込みます。

[FILL] 画面全体に収まるサイズにします。

[NEXT INC] 変形図と原形図の両方を表示します。

[DEF & ORIG] 変形量をアートにします。

[SETTINGS] → [AUTOMATIC] → [RETURN] ミーレス相当応力を指定します。

[SCALAR] → [Equivalent Von Mises Stress] → [OK] コンターバンド処理をします。
5.6 解析結果画像の出力
解析結果の画像は、Postscript、TIFF、JPEG 形式などのファイルに出力できます。
スタディックメニュー[UTILS]
→ [1〜4](CREATE SNAPSHOT FOR VIEW;) 各種画像形式のファイル

6 サンプルプログラム

・Marc
マニュアル E 編に掲載されている例題が、並列コンピュータ gen.isc.tohoku.ac.jp の以下の
ディレクトリにあります。コピーしてご利用ください。

gen.isc.tohoku.ac.jp: /usr/ap/MSC/marc2008r1/demo

・Mentat
マニュアルユーザガイドに掲載されている例題のプログラムファイルが、並列コンピュータ
gen.isc.tohoku.ac.jp の以下のディレクトリにあります。コピーしてご利用ください。

gen.isc.tohoku.ac.jp: /usr/ap/MSC/mentat2008r1/examples/mentat.png

7 マニュアル
PDF 形式のマニュアルを gen 上で提供しています。並列コンピュータ gen.isc.tohoku.ac.jp にロ
グインし、acoread コマンドでご覧ください。各マニュアルは、以下のディレクトリにあります。

和文(2003版) /usr/ap/MSC/mentat2008r1/doc/japenese/
vola.pdf :A 編 理論およびユーザ情報
volb.pdf :B 編 要素ライブラリ
volc.pdf :C 編 プログラム入力
vold.pdf :D 編 ユーザサブルーチンおよび特別ルーチン
vole.pdf :E 編 例題集
new_features.pdf :新機能ガイド
marc_ug.pdf :ユーザガイド
mt_help_ref.pdf :Mentat2003 ヘルプリファレンス
xsec_adden.pdf :ドキュメント補足資料

English version /usr/ap/MSC/mentat2008r1/doc/
vola.pdf :Volume A Theory and User Information
volb.pdf :Volume B Element Library
volc.pdf :Volume C Program Input
vold.pdf :Volume D User Subroutines and Special Routines
vole.pdf :Volume E Demonstration Problems
release_guide.pdf :release Guide
報告] 計算科学・計算機科学人材育成のためのスーパーコンピュータ無償提供利用報告

理学部化学科での計算化学演習

物理化学演習 B の Gaussian 実習

森田明弘
東北大学大学院理学研究科化学専攻

東北大学理学部化学科では、3年生を対象として当センターの「計算科学・計算機科学人材育成のためのスーパーコンピュータ無償提供」の制度を利用して、物理化学演習Bが実施されている。この演習（担当：森田明弘教授）は、水曜日1限に前期セミナーを通じて講義され、化学科3年生の大半が受講した。本稿ではその内容を紹介する。

本演習は、物理化学系の講義の一環として、群論および量子化学の理解を深める目的として、1セミナーの前半に群論の演習、後半に量子化学の演習を行っている。毎回化学科の講義室にて演習で扱う内容をまとめた講義を行い、それに基づく演習問題を宿題とする。学生は各自次回の演習までに、それを解いてレポートをまとめて提出する。次回の演習の初めには、その解答を解説して質問を受け付ける。成績は、提出されたレポートをもとにして評価する。サイバーサイエンスセンターより学生のための教育用アカウントを発行していただき、後半の量子化学の演習問題を解く際に、学生はサイバーサイエンスセンターの計算機でGaussianを使用した。

群論と量子化学は、物理化学の中でも特に演習が必要な課題である。群論は化学系の学生にとって、分子・結晶の対称性を理解する上で必須の知識といえるが、論理的な体系を講義するだけでは十分な理解が身に着くとは言えず、実際に学生自ら手を動かして対称性の感覚を把握できるようにしないため、今後の研究で使いものになる。そのためには、演習問題をこなす機会を用意することが必要であると考えている。量子化学も同様であり、近年の計算機の進歩に伴って、分子構造法や密度汎関数法は、一部の理論化学者のみで、汎用的な「計測機器」として実験者にも日常的に用いられる手法となっている。量子化学を実際の研究で使うためには、電子状態の理論を学ぶだけでは十分でなく、実際に使用してみてることが不可欠である。本演習では、現在最も広く普及している電子状態計算プログラムである Gaussian を用いて、その使い方に即して演習の機会を提供した。

本演習全体の内容をまとめると、以下のようになる。
群論演習（前半）
1. 群論の化学における重要性、対称操作、群とは、点群の種類と記号
2. 群の表現、既約表現と指標
3. 既約表現の記号、指標表の見方・使い方
4. Hamiltonian の対称性、直積表現
5. 分子の電子状態と電子スペクトルへの応用
6. 振動スペクトルへの応用
7. 固体結晶への応用

量子化学演習（後半）
1. Schrödinger 方程式と電子状態理論の精度
2. 分子内座標、原子単位
3. 基底関数
4. 構造最適化と振動計算
5. 繰返しの波動関数、電子相関
6. Gaussian の実用的な使い方、分子間力、分子内の電荷分布
7. 溶液内の分子、励起状態

以下、サイバーサイエンスセンターを利用させていただいた後半の量子化学の演習を紹介する。

分子の電子状態計算は、Schrödinger 方程式に対する何らかの近似解を求めるものであるが、
長い研究の歴史のなかで、その精度や妥当性に関して多くの知識が蓄積している。精度を無視し
た計算結果は無意味であり、本演習の第一の目的として、自分が扱いたい分子や物性を実際に
計算してみて、ユーザーの立場からみてその精度を実感してもらうことに置いた。良い結果を得
るためには、適切な電子状態理論の手法（電子相間の扱い）と基底関数を選ぶことが必要であり、
それぞれ実例をもって納得してもらう。

たとえば基底関数について例をあげると、基底関数には最小基底、double zeta, triple zeta
という精度の系列があり、さらに分極関数や diffuse 関数が適切に加えられることを知っておく
必要がある。よく知られた例では、アンモニア NH₃ 分子の分子構造を記述するには分極関数が必
要であること、アニオンの電子状態を描くには広がった基底関数が必要であることなど、実例を
あげて演習する。また開設系や励起状態など、電子状態の特徴を知って波動関数の記述を考える
場合があることを学習した。励起状態の詳細な扱いは本演習の範囲を超えているが、時間依存密
度汎関数のレベルで扱った。構造最適化や振動数計算、Gaussian の多段ジョブなど、実用的にお
役に立つ計算手法も、なるべく紹介するようにした。

一般に良い精度の計算を実行するには大きな計算資源が必要であり、実際の電子状態計算は、
精度と計算資源のバランスの中で行われる。本演習のなかでも、可能な限り良い精度での計算
を学生に体験してもらうためには、本サイバーサイエンスセンターの計算資源の提供は大変有意
義であった。

謝辞

本演習は、東北大学サイバーサイエンスセンターのスーパーコンピュータを利用することで
実現することができた。また、研究においては同センター関係各位に有益なご指導とご
協力をいただいた。
応用動物科学系学生実験、動物の遺伝育種に関する基礎実験報告
— SAS を使った実験結果の統計分析演習 —

鈴木啓一
東北大学農学部・動物遺伝育種学分野

1. はじめに

東北大学農学部応用動物科学系では、動物科学に関する基礎的な実験手法を学ぶため毎年3年生を対象とした学生実験が一年間をとおして7つの分野が担当し行われています。この中で、動物遺伝育種学分野（担当：鈴木啓一）では、サイバーサイエンスセンターの「計算科学・計算機科学人材育成のためのスーパーコンピュータ無償提供」の制度を利用し、並列コンピュータ上でサービスされている統計処理アプリケーションソフトであるSASを使った統計処理教育を行っています。この学生実験では15回の実習を行い、はじめに3系統の近交系マウスを用い、分宛（0日齢）から8週齢までの体重を週毎に学生に測定してもらいます。これらのマウスは生まれて4週齢から8週齢までの間は、高エネルギー・高蛋白質飼料と低エネルギー・低蛋白質飼料の2種類の飼料を給与され、性別に育成されます。得られたデータについて、SASを使って分散分析や回帰分析を行い、体重や増体重に及ぼす系統、飼料、性の効果の検定を行い、コンピュータ処理に馴染むと同時に、統計処理方法の習得を目指しています。今年度も34名の3年生を対象とした実習を行ったのでその内容を報告致します。

2. データの取得

東北大学農学部動物飼育実験棟において、交配分廃した3近交系マウス（C57BL/6、C3H/He、BALB/c）、それぞれ8～10頭の雌が生んだ子供マウスの体重を分群から考え週1度測定します。3週齢で離乳させ、4週齢で雌雄それぞれ各系統16頭ずつを高エネルギー・高蛋白質と低エネルギー・低蛋白質の2系群に分け、8週齢まで飼育します。それぞれの系統32頭（雌雄16頭ずつ）ずつの計合計96頭となります。毎週体重を測定し、それぞれの記録データを取ります。
3. データの解析

東北大学農学部のコンピュータ演習室には35台のWindows Vista OSのコンピュータが設置されています。はじめに、Excel を使い飼料、性、系統毎にデータ入力を行います。また、メール設定、サイバーサイエンスセンター並列コンピュータへの接続のための WinSCP と Putty の使い方を教えます。

4. SAS プログラムを使った統計処理

農学部では、3 年生を対象とした生物統計学（鈴木啓一担当）の講義が 3 年生の学生実験と並行して開講されています。14 回の講義では、確率変数の分布、データの視覚化、点推定と区間推定、検定の考え方、母平均に関する検定、比率の検定、分散の検定、分散分析、\r\r
\r\n\r\n分散分析の応用、一般線型モデル、ノンパラメトリック検定について教えます。

学生実験では、講義で修得した知識に基づき分散分析、多重検定を中心に SAS を用い実際のデータ分析を行います。今年度は以下の日程で実習を行いました。

6月4日 メール設定、パソコンの使い方、Excel を使ったデータ入力
6月7日 SAS の基本的な使い方として基本統計量、ヒストグラムの作成
6月8日 相関
6月9日 回帰
6月10日 ロジスティック回帰分析
6月11日 分散分析
6月14日 多重比較検定
6月15日 総伝率
6月16日 課題まとめ
6月17日 課題発表準備
6月18日 課題発表準備
6月19日 課題発表

SAS をランさせるためのコントロールファイルの書き方は予め TA が用意した上で、1 週間で測定記録したデータを統計処理することができるようになり、さらに、全員を 5 つの班編制し、得られたデータから課題を設定しパワーポイントを使って班毎に発表してもらいました。
今年度の課題発表タイトルは以下の通りでした。

1 班
題名：4週齢時以降の各週齢時間の増体量に及ぼす影響について

2 班
題名：マウスの成長に及ぼす一腹の兄弟数について

3 班
題名：2005年～2010年の年度別にみるマウスの成長の違いについて体重、体長、尾長を解析し年度ごとの集団に違いがあるか比較する

4 班
題名：ロジスティック曲線から見る給与する飼料内容のマウスへの影響

5 班
題名：5年間でみる!?♂と♀どっちが太りやすいか??

5. SASを使った学生の感想
実質2週間にわたるSASの統計処理を主体とした実験に対する学生の感想は以下の通りでした。

1. 今回の実験、実習は勉強になりましたか?

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>マウスの飼育・扱い</td>
<td>22</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Excelの使い方</td>
<td>25</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SASでの統計解析</td>
<td>27</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>テーマごとの課題演習</td>
<td>17</td>
<td>12</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>発表準備</td>
<td>7</td>
<td>19</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

1 : とても勉強になった、2 : 勉強になった、3 : どちらともいえない、
4 : あまり勉強にならなかった、5 : 意味がなかった

2. 統計解析について各テーマはどれくらい理解できましたか?

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SASの使い方</td>
<td>1</td>
<td>26</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>相関</td>
<td>1</td>
<td>21</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>回帰・ロジスティック回帰</td>
<td>2</td>
<td>20</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>分散分析・多重比較検定</td>
<td>1</td>
<td>19</td>
<td>10</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>伝達率</td>
<td>1</td>
<td>6</td>
<td>15</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

1 : 理論まで完璧に理解した、2 : だいたい理解した、3 : どちらとも言えない、
4 : あまりよく理解できなかった、5 : まったく理解できなかった

今回の学生実験では、8割以上の学生が勉強になったと感じ、統計解析に関しても7割以上の学生が大体理解をしたとの感想でした。生物統計学の講義では計算の練習を行うことはおらず、一方、学生実験では自ら得たデータを使って実際の統計処理を高度な統計処理も可能なSASプログラムを利用できたことは学生にとって大変理解しやすかったと思われます。これを機会に学生が4年生、さらに大学院に進学後、得られた研究データについてSASを使って発表することに駆使できることを期待したいと思います。
報告

東北大学サイバーサイエンスセンター講習会 in 秋田大学の開催報告

東北大学サイバーサイエンスセンターは、秋田大学総合情報処理センターとの交流を深めるこ
とを目的として、キャンパスユビキタスネットワークと、全国共同利用である東北大学大規模科
学計算システムに関する講習会を企画し、平成22年6月18日（金）に秋田大学総合情報処理セ
ンターにおいて開催されました。

本講習会では、まず国際無線LANローミング基盤であるeduroamや最新の研究開発の話題を
取り上げ、引き続き、ベクトル並列型スーパーコンピュータSX-9の紹介、システムの運用や研究
開発、利用方法の説明のち、秋田大学のみなさまに端末室にて実際に東北大学のパソコンに遠
隔ログインして利用を体験していただきました。多くの方々（講演聴講者29名、体験利用参加者
17名）にご参加いただき、受講者には世界有数のスーパコンを気軽に体験できる良い機会となりま
した。

今回の講習会では、会場となりました秋田大学総合情報処理センターのスタッフのみなさまに
大変お世話になり、厚く御礼申し上げます。また、このような機会を通じて、東北地区における
大規模科学計算利用がますます発展していくことを期待いたします。

講習会のプログラム

主催：東北大学サイバーサイエンスセンター、秋田大学総合情報処理センター
日時：平成22年6月18日（金）14：45～18：00
会場：秋田大学総合情報処理センター第一端末室
開催校挨拶
14：50～15：10
「国際無線LANローミング基盤eduroamとキャンパスユビキタスネットワークの研究開発」
東北大学サイバーサイエンスセンター後藤英昭
15：10～16：00
「東北大学大規模科学計算システムの運用とベクトルコンピューティングに関する研究開発」
東北大学サイバーサイエンスセンター小林広明
16：00～16：20
「東北大学のスーパーコンピュータの利用手続きや負担金等について」
東北大学情報部情報基盤課花岡勝太郎
16：30～18：00
「スーパーコンピュータの体験利用」
東北大学情報部情報基盤課花岡勝太郎
東北大学サイバーサイエンスセンター江川隆輔、水木敏明
「東北大学サイバーサイエンスセンター講習会 in 秋田大学」に参加して

吉崎 弘一
秋田大学総合情報処理センター

平成22年6月18日に、「東北大学サイバーサイエンスセンター講習会 in 秋田」が、秋田大学総合情報処理センターにて開催されました。同講習会は、東北大学サイバーサイエンスセンターと秋田大学総合情報処理センターの共催として開催しましたので、会場の様子などをここで紹介したいと思います。

講習会では、国際無線 LAN ローミング基盤である eduroam と、東北大学が保有するペクトル並列型スーパーコンピュータ SX-9についてのご講演がありました。また、講習会後半では、SX-9 が全国共同利用施設であることを踏まえ、講習会参加者が会場から東北大学の SX-9 システムに遠隔ログインし、実際に SX-9 上でプログラムを実行する実習が行われました。

講習会後に参加者に記載してもらったアンケートを見ますと、その半数以上が学部学生であり、ペクトル並列型高速演算装置を用いるのは、今回が初めてであったことが分かります。この多くのスーパーコンピュータ初心者にとっても、講演に加えて SX-9 の実習時間が設けられていたため、その利用技術の理解を深めることができたように思います。このことは、アンケートの項目「今回の講習会のよかった点」として回答された、「実際にコンパイエル、ジョブ投入等の作業を体験可能」と、「知らないコマンドがあったので面白かった。いろいろな手法を身につけることができた」なども見て分かります。また、秋田大学が保有する SX-8i と連携して研究を進める上でも、今回の講習会は有意義なものであったと感じています。

最後になりますが、講習会の開催にあたり、東北大学サイバーサイエンスセンター長の小林広明先生や水木敬明先生を始めとする東北大学サイバーサイエンスセンターの方々には大変お世話になりました。この場を借りて厚く御礼申し上げます。
[報告]

JHPCN: 学際大規模情報基盤共同利用・共同研究拠点
第1回シンポジウム報告

江川隆則
スーパーコンピューティング研究部

平成22年4月より、北海道大学、東北大学、東京大学、東京工業大学、名古屋大学、京都大学、大阪
大学、九州大学にそれぞれ附属するスーパーコンピュータを持つ8つの共同利用の施設を構成拠点とする
「学際大規模情報基盤共同利用・共同研究拠点」が、文部科学大臣の認定を受け、本格的な活動を開始しました。本拠点形成の目的は、超大規模数値計算系応用分野、超大規模データ処理系応用分野、
超大容量ネットワーク技術分野、およびこれらの技術分野を統合した大規模情報システム関連研究分野、
更には分野間で互いの複合分野について、学際的な共同利用・共同研究を実施することにより、我が国の
学術・研究基盤の更なる高度化と恒常的な発展に資することになります。

平成22年度は、37件の課題が学際大規模情報基盤共同利用・共同研究として採択され、これをうけて平成22年9月1日に東京大学山上会館において学際大規模情報基盤共同利用・共同研究拠点第1回シ
ンポジウムが開催されました。本シンポジウムでは、平成22年度採択課題、および各構成拠点の活動紹
介が行われ活発な議論が展開されました。本稿では、シンポジウムにおいて発表された、当センターとの
共同研究課題4件、当センターの活動報告の発表内容を掲載致します。

【当センターとの共同研究課題】

・次世代ペグスケールCFDのアルゴリズム研究

研究代表者 中橋和博（東北大学）

・計測融合オペレーション実現のための大規模計算機空気冷却風速場の高解像度速度変化解析

研究代表者 松岡浩（理化学研究所）

・学術グリッド基盤の構築・運用技術に関する研究

研究代表者 合田憲人（国立情報学研究所）

・グリッドデータファームによる大規模分散ストレージの構築とサイエンスクラウド技術の研究

研究代表者 村田健次（情報通信研究機構）
次世代のCFDを目指した研究

Building-Cube Method
（直交格子積み上げ法）

- 等間隔直交格子法を基礎とした手法
- 空・ロボスタなメッシュ作成
- 多数の小領域“Cube”による領域分割
- 全てのCubeで等価な計算負荷
- 高解像度解法を容易に構築可能
- 簡易なデータ構造とアルゴリズム
- 大規模データの圧縮

大規模流体解析

物体表面
（8倍に拡大して可視化）

F1周りの生成された2億点の大規模格子
・最小メッシュの幅は約5ミリメートル
（PC上で数分で生成）

フロントウィング上の加速

非圧縮性ソルバーによる解析
・計算に必要なメモリは約60GB

データ圧縮

・Wavelet変換による効率の良いデータ圧縮
・時系列データにも適用可能
・データ量を1/10～1/20程度に

空力音響解析

・主翼から生じる騒音の推定

主翼後流の流れ場

データ圧縮

・Wavelet変換による効率の良いデータ圧縮
・時系列データにも適用可能
・データ量を1/10～1/20程度に

データ圧縮は、様々な方法で実施されています。
研究目的:
格子ガス法超並列計算手法を利用して、大規模計算機空冷冷却システムの高解像度な通過変化シミュレーションを実現する。
また、本手法による結果を、現実の大規模計算機機械学研究者が神戸に設置する次世代スーパーコンピュータ施設等における風環境の実測値と従来手法によるシミュレーション結果と比較して実用性を評価する。
さらに、風速計等各種センサーから得られる時系列センサデータをもとに本手法による計算モデルを時々刻々修正することによってセンサーの位置設定していない場所の風環境についても実際に近い高解像度なシミュレーション結果が得られるような計測融合シミュレーション手法について具体的に開発発表を受ける。また、計算機シーケンスの異常時にも通過変化シミュレーションに基づく適切なオペレーション対応が得られように、これらの計算をクラウドコンピューティングによって実現することを目指す。
以上のことを通じて、ペットフロップスを超える大規模計算機システム技術のうち、計算機空間冷却システムを中心にした計測融合オペレーション手法を確立し、1)計算機システム内の各部位に及ぼす通過変化を実現して高速化・長寿命化を目指すシステムを運転と、2)冷却・空調・電源系を含めた計算機システム全体のエネルギー効率向上を目指す運転の両立に資する。

研究の意義:
ペットフロップスを超える超並列計算システムでは、通常メガワット以上の巨大な発熱を伴うばかりでなく、その発熱分布は広範囲に広がり、計算機システムのモンタージュシステムによる計算ノードの割当てを除き、各部プログラムのエラー発生、計算機ハードウェアの故障のほか、これに伴う群発状態のため、計算機システムの冷却・空調・電源系におけるトラブル発生が予想できない形状変化を生じる。他方、従来の冷却制度では、液冷システム、空冷システムとし、計算機冷却システムの入出力温度と入出力流量を確保し、冷却システムの冷却効率を向上させることに電源オブにするとして計算パワーエ及び電力の装置の防護装置を設けてする。

今後の大規模計算機システムにおいては、上述のとおり、異常な通過変化の保護が多様化するため、従来の制御方法では、流体温度と定格温度から大きなオーバーシートやアンダーシートが生じ可能性が高まることもある。これは、制限を超える水準に達した、温度の低下、過度な発熱の場合でも、電源装置の信頼性や寿命に損を及ぼす。これに対して、各種センサー情報とシミュレーションから通過変化の全体像を正確に把握し、冷却システムの制御を適切に実行する必要がある。すなわち、大規模計算機では、新たな“計測融合システムアーキテクチャ”というものが重要課題になる。本研究は、格子ガス法による計測融合オペレーションの可能性を開拓することを目的とする。
■目的
ネットワーク上の分散された様々な研究データを融合して処理することにより、未知の問題解決や科学的発見を行う新たな研究手法（e-サイエンス）が注目されている。e-サイエンスを実現するためには、ネットワーク上で分散した様々なデータを連携し、かつ高性能計算機群を用いてこれらのデータを高速に処理するためのグリッド基盤が必要となる。本研究では、我が国のe-サイエンスを活用した研究を促進することを目指し、学際大規模情報基盤共同利用・共同研究観点に位置づけられた計算機基盤、およびこれに接続する学術情報ネットワークであるSINET3から構成される実用的なグリッド基盤の構築・運用するための技術に関する研究を行う。

■グリッドミドルウェアの配備・運用技術に関する研究
2010年度目標：データグリッド×境の構築と運用実験
- 多数の情報基盤センターにまたがるGfarmを用いた分散ファイルシステムの構築
- SINET3が提供する10Gbpsネットワークの活用
- 3次元流体音数値計算アプリケーションによる性能評価実験

■グリッド×境上のユーザ管理技術に関する研究
2010年度目標：Shibboleth認証連携技術を用いたグリッド認証システムの構築と運用実験
- Shibboleth認証技術を用いたグリッド環境へのシングルサインオン
- Shibboleth認証技術を用いたグリッド認証書のオンライン発行
- 情報基盤センターにおけるグリッド利用者向けユーザ管理業務フローの検討（グリッドバック）

■参考文献
小林泰三、天野浩文、青柳隆、合田恵人、「大学間連携グリッド基盤の運用」、情報処理学会誌51(2) pp.134-143、2010年2月。
村田健史（情報通信研究機構）

グリッドデータファームによる大規模分散ストレージの構築と
サイエンスクラウド技術の研究

NICTサイエンスクラウドのコンセプト

国内規模での分散ストレージ（Glarm）のパフォーマンス

サインスペースクラウド分散ストレージ利用実績・状況

使用制限
2009年8月～2010年7月（拡張予定）

使用量
使用量

ファイル数：1,770

ユーザ数
177

Web Serviceを活用した
メタデータ自動収集・データフレームワーク実装システム

クラウドによる
スパコン仮想化
サイバーサイエンスセンター

東北大学サイバーサイエンスセンター
スーパーコンピューティング研究部
江川隆輔
egawa@isc.tohoku.ac.jp

JHPCN
学際大規模情報基盤共同利用・共同研究拠点 第1回シンポジウム

サイバーサイエンスセンターの沿革

- 1969年に全国共同利用型大型計算機センターとして設立
- 汎用大型計算機の運用
- 1985年よりスーパーコンピュータセンターとして活動
- 大規模科学計算システムとしてベクトル型のスーパーコンピュータを運用
- 2008年に情報シナジーセンターからサイバーサイエンスセンターへ改称

大規模科学計算技術に関する拠点として、研究室あるいは部門では保持できない高性能クラスの処理能力を有するスーパーコンピューティング環境の管理・運営・サービス提供・研究開発を促進
ベクトル型スーパーコンピュータの利用分野

CO2制減

地震防災

地球観測

実アプリケーション実行におけるベクトル型スーパーコンピュータの有用性

Vector Processors

<table>
<thead>
<tr>
<th></th>
<th>Peak Gflop/s</th>
<th>Peak Mem. BW (GB/s)</th>
<th>B/f</th>
</tr>
</thead>
<tbody>
<tr>
<td>SX-9</td>
<td>102.4</td>
<td>256</td>
<td>2.5</td>
</tr>
<tr>
<td>SX-8</td>
<td>16</td>
<td>64</td>
<td>4</td>
</tr>
<tr>
<td>SX-7</td>
<td>8.8</td>
<td>35.3</td>
<td>4</td>
</tr>
</tbody>
</table>

Scalar Processors

<table>
<thead>
<tr>
<th></th>
<th>Peak Gflop/s</th>
<th>Peak Mem. BW (GB/s)</th>
<th>B/f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nehalem-EX</td>
<td>72.48</td>
<td>34.1</td>
<td>0.46</td>
</tr>
<tr>
<td>Nehalem-EP</td>
<td>42.56</td>
<td>25.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Harpertown</td>
<td>50.56</td>
<td>10.67</td>
<td>0.2</td>
</tr>
</tbody>
</table>

高い実行効率
大規模科学計算システム稼働状況

高い稼働率

学内外からの高いニーズ

ベクトル型コンピュータに対するニーズ

- 登録ユーザ数 1383人(学内:874人、学外:509人)
- 学外ユーザは111の学術研究機関、4つの民間企業

学外ユーザの分布

全国に分散した多数のユーザ

東北地方を主としながらも
全国に分散した多数のユーザ

北海道
3機関:7名

中国
機関:2名

関東
機関:105名

東海
機関:37名

中国
機関:12名

九州
機関:3名

四国
機関:6名

近畿
機関:11名

北陸・甲信越
機関:26名

関東
機関:1283名

東北
機関:35名

北海道
機関:7名

学術研究機関利用
学術運営利用
学内利用

55.3%
40.0%
4.7%
サイバーサイエンスセンターの取り組み

- 使い易いシステム・計算環境の提供
- 大規模ジョブ実行環境の提供
- ユーザ支援体制の強化
 - 高速化支援活動
 - サイバーサイエンスセンター共同研究（計算科学者と計算機科学者の連携）
 - 講習会等の実施
 - 国際共同研究の推進
- 次世代HPC基盤、高度シミュレーション技術に関する研究開発

大規模・長時間ジョブ実行環境の提供

- 使い易いシステム提供を目指して
- ジョブの実行時間無制限にして、計算資源を提供

長時間ジョブに対するニーズ

高演算性能・メモリ容量大規模化に対する要求
ユーザ支援体制の強化

1997年にいち早くユーザ支援体制構築に着手

利用者

技術職員

教員

企業

問題の分析，それにに基づく適切な計算モデルの提示，解決に向けた技術の研究開発
現システム利用上の問題分析，最適利用技術の研究・開発
現システムの最適化，高効率利用に関する技術情報の共有
運用で得た知見を基に次世代スーパーコンピュータシステムの共同研究開発

ユーザ・センタ・ベンダー3者の協調による高効率高性能計算環境の構築

高速化支援活動&講習会等

ユーザプログラム高速化支援活動を1999年より実施

<table>
<thead>
<tr>
<th>年</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>件数</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>18</td>
<td>20</td>
<td>8</td>
<td>29</td>
<td>10</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>単体性能向上比</td>
<td>4.5</td>
<td>2.5</td>
<td>1.6</td>
<td>2.2</td>
<td>6.7</td>
<td>2.9</td>
<td>1.5</td>
<td>3.0</td>
<td>33</td>
<td>9.3</td>
<td>47</td>
</tr>
<tr>
<td>並列性能向上比</td>
<td>31.7</td>
<td>8.6</td>
<td>4.9</td>
<td>2.8</td>
<td>18.6</td>
<td>4.5</td>
<td>4.1</td>
<td>8.0</td>
<td>1.9</td>
<td>5.05</td>
<td>3.6</td>
</tr>
</tbody>
</table>

※単体・並列性能向上比：オリジナルの性能を1としたときの性能向上

講習会の実施

利用法・プログラミング・高速化手法・ネットワークに関する講習会を開催

2007年からは，出張講習会，講習会の遠隔配信を実施
共同研究の推進

サイバーサイエンスセンター共同研究

- 実シミュレーションコード解析に基づく臨床学的研究開発の推進を目的に1999年より実施
 - ユーザ(計算科学者)とセンター(計算機科学者)が連携して
 - 現有スーパーコンピュータの高度利用技術の研究開発
 - 次期スーパーコンピュータの要素技術の研究開発

これまでに106件の共同研究を推進

<table>
<thead>
<tr>
<th>年度</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>件数</td>
<td>8件</td>
<td>6件</td>
<td>5件</td>
<td>7件</td>
<td>8件</td>
<td>9件</td>
</tr>
<tr>
<td>件数</td>
<td>2005</td>
<td>2006</td>
<td>2007</td>
<td>2008</td>
<td>2009</td>
<td>2010</td>
</tr>
<tr>
<td>件数</td>
<td>12件</td>
<td>12件</td>
<td>11件</td>
<td>8件</td>
<td>9件</td>
<td>11件</td>
</tr>
</tbody>
</table>

共同研究機関

- 理学研究科, 工学研究科, 情報科学研究科, 東北アジア研究センター, 東京大学, 金沢大学, 東京理科大学, 東京工業大学, 東京農工大学, 大阪大学, 小野木大学, 東京都立工業高等専門学校 等

ユーザとの共同研究事例

F1の空力解析(東北大学工学研究科中橋教授との共同研究)

TX-7/i960とスクラル機との比較

<table>
<thead>
<tr>
<th></th>
<th>TX7(i960)</th>
<th>SX-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cores</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Peak Perf.</td>
<td>6.4GF (1x)</td>
<td>409.9F (64x)</td>
</tr>
<tr>
<td></td>
<td>102.97 (16x)</td>
<td>1.6TF (256x)</td>
</tr>
<tr>
<td></td>
<td>26TF (4096x)</td>
<td></td>
</tr>
<tr>
<td>Sustained Speedup</td>
<td>1x</td>
<td>36x</td>
</tr>
<tr>
<td></td>
<td>21x</td>
<td>316x</td>
</tr>
<tr>
<td></td>
<td>3460x</td>
<td></td>
</tr>
</tbody>
</table>

Elapsed Time (Hours)

<table>
<thead>
<tr>
<th>TX-7 64 Cores</th>
<th>400GFlop/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>SX-9 1 Node (16 CPUs)</td>
<td>1.6TFlop/s</td>
</tr>
<tr>
<td>SX-9 16 Nodes (256 CPUs)</td>
<td>26.2TFlop/s</td>
</tr>
</tbody>
</table>

#99.9%のペクトル化率
#2値の計算を達成
#256CPU(16ノード)で161倍の性能向上を達成
#SX-9 1CPUでは6日、16ノードで90分の計算時間
#スクラル型クラスタ32CPU(64Core)で36日必要!
他機関との共同研究

国内外の高性能計算機関と連携しながら高性能計算に関する共同研究し、も推進し、当該分野での国際的リーダシップの維持・強化

次世代ベクトルコンピュータアーキテクチャ、大規模ベクトル化技術、ベクトル・スカラ連携技術、大規模シミュレーション技術、マルチスケール・マルチフィジックスシミュレーション技術に関する研究を推進

共同研究機関

- 理化学研究所
- シュトゥットガルト大学高性能計算センター(HLRS)
- ドイツ気象庁(DWD)
- ユーリッヒ研究所・アーヘン工科大学(GRS)

これらの成果を基に、将来のケーパビリティコンピューティング基盤を構築し、ユーザに還元

新世代高性能計算基盤の構築へ向けて

近年の研究開発部（スーパーコンピューティング研究部）の取り組み

- 次世代ベクトルアーキテクチャ
- ベクトルキャッシュ機構
- チップマルチコアベクトルプロセッサ
- 3次元積層型ベクトルプロセッサ
- HPCクラウド基盤の構築
- ベクトルコンピューターコミュニケーション
- ベクトル・スカラ連携技術、基盤の構築
- ベタスケールシミュレーション技術
- マルチスケール・マルチフィジックスシミュレーション技術
- 大規模ベクトル化技術
研究開発事例（広域ベクトル連携）

東北大学・大阪大学のGridMPIによる広域SX連携において51.3%の実行効率を達成

学際大規模情報基盤共同利用・共同研究拠点への取り組み

これまでに、全国共同利用施設として培ってきた知識・経験・体制を拠点活動・拠点共同研究へ展開

サイバーサイエンスセンターでは、拠点共同研究において、特に以下のテーマに関する課題を歓迎します。

ベクトル・並列処理用の計算機アーキテクチャに関する共同研究

- これまでの共同研究の成果が取り入れられて開発されたベクトル型スーパーコンピュータの最新型を有していることもあり、ベクトル処理および並列処理に基づく高性能計算機アーキテクチャ設計の共同研究

高性能計算基盤ソフトウェア技術/高度シミュレーション技術に関する共同研究

- 高性能計算基盤ソフトウェア技術、高性能計算技術、およびマルチスケール・マルチフィジックスシミュレーションのためのベクトル・スカラー連成計算といった高度シミュレーション技術の共同研究

※上記研究課題以外もお気軽にご相談ください
学際大規模情報基盤共同利用・共同研究拠点 採択課題

次世代ベタスケールCFDのアルゴリズム研究
中橋和博(東北大学)

利用機関：東北大、名大、阪大

計測融合オペレーション実現のための大規模計算機空気冷却風速場の高解像度過渡変化解析
松岡浩(理化学研究所)

利用機関：東北大、阪大、九大

学術グリッド基盤の構築・運用技術に関する研究
合田恵人(国立情報学研究所)

利用機関：北大、東北大、東大、東工大、名大、京大、阪大、九大

グリッドデータファームによる大規模分散ストレージの構築とサイエンスクラウド技術の研究
村田健史(情報通信研究機構)

利用機関：東北大、名大、阪大、九大

ネットワーク型拠点の特徴を活かし、複数機関利用を想定した共同研究課題を推進

まとめ

サイバーサイエンスセンターの紹介

システム・利用状況等

サイバーサイエンスセンターの取り組み

大規模・長時間ジョブのサポート

ユーザ支援体制

研究開発部の取り組み

学際大規模情報基盤共同利用・共同研究拠点へ向けて

拠点共同研究・当センターに関するお問い合わせは
uketuke@isc.tohoku.ac.jp

にご連絡下さい。
[Web版大規模科学計算システムニュース]より
大規模科学計算システムニュースに掲載された記事の一部を転載しています。
http://www.ss.isc.tohoku.ac.jp/tayori/

費目別の請求書発行について（No.108）

支払責任者が学外、学内にかかわらず、支払費目名の入った利用負担金請求書を希望する場合は、あらかじめ shiharai コマンドで支払順位、支払費目、支払予算額を指定してください。不明な点がある場合は、共同利用支援係（022-795-6251）へお問い合わせください。

（共同利用支援係、会計係）

利用負担金額の表示コマンドについて（No.108）

本センター大規模科学計算システムでは、利用者の利用額と支払責任者ごとの利用額・負担額を表示するためのコマンドとして kakin, skakin があります。これらのコマンドは、並列コンピュータ (gen.isc.tohoku.ac.jp) にログインして使用します。

<table>
<thead>
<tr>
<th>コマンド名</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>kakin</td>
<td>利用者ごとの利用額を各システム、月ごとに表示</td>
</tr>
<tr>
<td>skakin</td>
<td>支払責任者ごとに集計した利用額と負担額を表示（負担額は割引制度に基づいた金額）</td>
</tr>
</tbody>
</table>

いずれも、前日までご利用いただいた金額を表示します。コマンド使用例は大規模科学計算システムウェブページをご覧ください。

利用金額の表示
http://www.ss.isc.tohoku.ac.jp/guide/futankin.html#futan_2
利用負担金割引制度
http://www.ss.isc.tohoku.ac.jp/guide/teigaku.html

（共同利用支援係）
広報 SENAC は、広く利用者の便を計るために、下記の要項にしたがった投稿も記載いたします。

1. お寄せいただきたい投稿内容
次のような内容の投稿のうち、当センターで適当と判断したものを掲載します。その際には、
原稿の修正をお願いすることもありますのであらかじめご了承ください。
・一般利用者の方々が関心をもたれる事項に関する論説
・センターの計算機を利用して行った研究論文の概要
・プログラミングの実例と解説
・センターに対する意見、要望
・利用者相互の情報交換

2. 執筆にあたってご注意いただく事項
(1) 原稿は複写です。
(2) 語題以外は、「常用漢字」を用い、かなは「現代かなづかい」を用いるものとします。
(3) 学術あるいは技術に関する原稿の場合、200 字〜400 字程度のアブストラクトをつけてください。
(4) 参考文献は通し番号を付し末尾に一括記載し、本文中の該当箇所に引用番号を記入ください。
・雑誌：著者、タイトル、雑誌名、巻、号、ページ、発行年
・書籍：著者、書名、ページ、発行年、発行年

3. 原稿の提出方法
原稿のファイル形式は Word を標準としますが、PDF での提出も可能です。サイズは以下を参照してください。ファイルは電子メールで提出してください。
Word の場合
・用紙サイズ：A4
・余白：上=25mm 下=25mm 左右=25mm 綴じ代=0
・標準の文字数（45 文字 47 行）
<文字サイズ等の目安>
・表題＝ゴシック体 14pt 中央 ・副題＝明朝体 12pt 中央
・氏名＝明朝体 10.5pt 中央
・所属＝明朝体 10.5pt 中央
・本文＝明朝体 10.5pt
・章・見出し番号＝ゴシック体 11pt〜12pt
*余白サイズ、文字数、文字サイズは目安とお考えください。

4. その他
(1) 執筆者には、希望があれば別刷 50 部を進呈します。50 部を超える分については、著者の実費負担とします。別刷の希望数等は投稿の際に申し出てください。
(2) 投稿予定の原稿が 15 ページを超える場合は以下まで投ってご連絡ください。
(3) 初回の校正は、執筆者が行って、誤植の防止をはかるものとします。
(4) 原稿の提出先は次のとおりです。
東北大学サイバーサイエンスセンター内 情報部緊急課 共同利用支援係
email uketuke@isc.tohoku.ac.jp
TEL 022-796-3406
編集後記

ご紹介が遅れましたが、本センター学術情報研究部におられた木下哲男教授が、4月に電気通信研究所へ転出されました。木下先生は、前身だった情報システムセンターの設立時から本センターの業務のなかで学術情報の蓄積・管理・利用技術の分野などを担われ、図書館ディジタルアーカイブスや全学統合認証などのシステムの構築に貢献されました。

とくに認証基盤は、多様な業務の情報システムの構築されている環境の中で、それらのシステムや情報を連携・協調させることにより大学業務プロセスを改革するための基盤として重要度と期待が高まっているものです。本センターでも、統合情報基盤を構築するために取り組んでいる情報システムに関わる研究開発を反映させて、学術情報研究部を情報基盤研究部に改称いたしました。また、情報基盤研究部に10月から菅沼浩夫教授が着任いたしました。

全国共同利用の大規模科学計算システムと共に、大学の情報基盤システムも本センターの業務分野の両輪をなすものです。どちらについても、皆様からのご支援やご指導をおねがいできれば幸いに存じます。（L.S）

最近は朝夕めっきり涼しくなって過ごしやすくなってきました。今年の日本列島は、猛暑、大風と異常気象が続きました。熱中症にかかった方やそれに近い症状になった方も多いのではないでしょうか。センター本館の屋上にも温湿度計が設置されていますが、今年の最高気温はなんと36.4℃（7月24日）でした。私事ですが、水分補給には気をつけているつもりですが、ちょっとした運動中に発熱が数日ありました。薬だの、問題でもなさそうですが。

また、今年4月から栽培指導型農園にて野菜の収穫を経験しています。初めてのかことなのでいろいろな発見があり大変面白いいものです。収穫時期が来ると色々な野菜が出来るのはうれしいのですが、次から次に楽しみに賞味される「ナス」には驚かされました。10月に入ると「サトウキ」との収穫が期待できます。地元名物の「芋煮会」が楽しみです。

さて、今回の報告では秋田大学での講習会などを取り上げています。講習会等、いろいろなご要望がございましたらセンターまでご連絡ください。（Y.T）

SENAC 編集部会
小林広明　森根秀昭　水木敬明　後藤英昭
江川隆輔　伊藤英一　山内　斎　小野　敏
髙橋洋一　斎藤くみ子

サイバーサイエンスセンター前　整備中の青葉山新キャンパス

平成22年10月発行
編集・発行　東北大学
サイバーサイエンスセンター
仙台市青葉区荒巻字青葉6-3
郵便番号　980-8578
印刷　大成印刷株式会社
システム一覧

<table>
<thead>
<tr>
<th>計算機システム</th>
<th>ホスト名</th>
<th>機種</th>
</tr>
</thead>
<tbody>
<tr>
<td>スーパーコンピュータ</td>
<td>super.isc.tohoku.ac.jp</td>
<td>SX-9</td>
</tr>
<tr>
<td>並列コンピュータ</td>
<td>gen.isc.tohoku.ac.jp</td>
<td>Express5800</td>
</tr>
</tbody>
</table>

サービス時間

<table>
<thead>
<tr>
<th>利用システム名</th>
<th>利用時間帯</th>
</tr>
</thead>
<tbody>
<tr>
<td>スーパーコンピュータ</td>
<td>連続運転</td>
</tr>
<tr>
<td>並列コンピュータ</td>
<td>連続運転</td>
</tr>
<tr>
<td>館内利用</td>
<td>月曜日～金曜日 8:30〜21:00、土・日・祝日は閉館</td>
</tr>
</tbody>
</table>

ジョブクラスと制限値

<table>
<thead>
<tr>
<th>計算機システム</th>
<th>処理</th>
<th>ジョブクラス</th>
<th>CPU時間</th>
<th>メモリ容量</th>
</tr>
</thead>
<tbody>
<tr>
<td>スーパーコンピュータ</td>
<td>会話型</td>
<td>(4cpu)</td>
<td>1 時間</td>
<td>8GB</td>
</tr>
<tr>
<td></td>
<td>バッチ処理</td>
<td>ss (4cpu)</td>
<td>1 時間</td>
<td>256GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>s (4cpu)</td>
<td>無制限</td>
<td>32GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p8 (8cpu)</td>
<td></td>
<td>512GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p16 (16cpu)</td>
<td></td>
<td>1024GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p32 (32cpu)</td>
<td></td>
<td>1024GB×2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p64 (64cpu)</td>
<td></td>
<td>1024GB×4</td>
</tr>
<tr>
<td>並列コンピュータ</td>
<td>会話型</td>
<td>(4並列)</td>
<td>1 時間</td>
<td>8GB</td>
</tr>
<tr>
<td></td>
<td>バッチ処理</td>
<td>as (非並列)</td>
<td>無制限</td>
<td>16GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>am (Marc 専用)</td>
<td></td>
<td>16GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>am2 (Marc 専用)</td>
<td></td>
<td>128GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a8 (8並列)</td>
<td></td>
<td>128GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a16 (16並列)</td>
<td></td>
<td>256GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a32 (32並列)</td>
<td></td>
<td>512GB</td>
</tr>
</tbody>
</table>
目次
東北大学サイバーサイエンスセンター
大規模科学計算システム広報 Vol.43 No.4 2010–10

[共同研究成果]
CG-FMM による板状導体の電磁界解析... 陳 強 1
今野 佳祐
澤谷 邦男

有機/金属界面の第一原理シミュレーション... 森川 良恵 9

[大規模科学計算システム]
非線形構造解析プログラム MSC. Marc / Marc Mentat の紹介.............................. 17

[報告]
〈計算科学・計算機科学人材育成のためのスーパーコンピュータ無償提供利用報告〉
理学部化学生科での計算化学演習.. 森田 明弘 29
応用動物学系学生実験、動物の遺伝育種に関する基礎実験報告.................. 藤本 啓一 31

東北大学サイバーサイエンスセンター講習会 in 秋田大学の開催報告.................. 34
「東北大学サイバーサイエンスセンター講習会 in 秋田大学」に参加して 吉崎 弘一 35

JHPCN: 学際大規模情報基盤共同利用・共同研究拠点
第1回シンポジウム報告.. 江川 隆輔 36

[Web版大規模科学計算システムニュース]より
費目別の請求書発行について (No.108) ... 52
利用負担金額の表示コマンドについて (No.108) ... 52
執筆要項.. 53
編集後記.. 54